Modeling the consequences of land plant evolution on silicate weathering

2019 ◽  
Vol 319 (1) ◽  
pp. 1-43 ◽  
Author(s):  
Daniel E. Ibarra ◽  
Jeremy K. Caves Rugenstein ◽  
Aviv Bachan ◽  
Andrés Baresch ◽  
Kimberly V. Lau ◽  
...  
Geology ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Michael P. D’Antonio ◽  
Daniel E. Ibarra ◽  
C. Kevin Boyce

Abstract The repeated evolution of trees is widely thought to have enhanced the capacity of silicate weathering via the impact of deep rooting. However, land plants are also responsible for wetland assembly and organic carbon burial. The total burial output of carbon via both organic and inorganic deposition must balance input to the exogenic system from volcanic outgassing on million-year time scales. Increased partitioning of carbon burial toward organic carbon and away from inorganic carbon reduces the marine carbonate burial flux, necessitating a lowered total flux of alkalinity to the oceans to maintain mass balance in the Earth’s surface carbon cycle. This flux includes the nutrient delivery from the terrestrial vegetation implicated as a driver of marine evolution, extinction, and environmental change including anoxia and black shale formation. Here, the burial of terrestrial organic carbon, first substantially in the Devonian and continuing through to the present, is argued to require a reduction in silicate weathering rates when compared to earlier times, given the independence of volcanic outgassing from weathering on short time scales. Land plants still may cause reductions in steady-state atmospheric CO2 levels, but via increasing the silicate weathering feedback strength, not silicate weathering rates. The mass-balance constraints on the long-term carbon cycle provide a mechanism for linking how land plant evolution simultaneously increased nutrient recycling and weathering efficiency of the Earth’s surface.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Maria S. Krasnikova ◽  
Denis V. Goryunov ◽  
Alexey V. Troitsky ◽  
Andrey G. Solovyev ◽  
Lydmila V. Ozerova ◽  
...  

PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of allPhyscomitrella patensmiR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing ofMarchantia polymorphagenomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads ofM. polymorphaat NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.


Nature Plants ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Jian Zhang ◽  
Xin-Xing Fu ◽  
Rui-Qi Li ◽  
Xiang Zhao ◽  
Yang Liu ◽  
...  

1986 ◽  
Vol 123 (4) ◽  
pp. 445-454 ◽  
Author(s):  
J. Gray ◽  
J. N. Theron ◽  
A. J. Boucot

AbstractThe first occurrence of Early Paleozoic land plants is reported from South Africa. The plant remains are small, compact tetrahedral spore tetrads. They occur abundantly in the Soom Shale Member of the Cedarberg Formation, Table Mountain Group. Marine? phytoplankton (sphaeromorphs or leiospheres) occur with the spore tetrads in all samples. Rare chitinozoans are found in half the samples. Together with similar spore tetrads from the Paraná Basin (Gray et al. 1985) these are the first well-documented records of Ashgill and/or earlier Llandovery land plants from the Malvinokaffric Realm, and from the African continent south of Libya. These spore tetrads have botanical, evolutionary, and biogeographic significance. Their size in comparison with spore tetrads from stratigraphic sections throughout eastern North America, suggests that an earliest Llandovery age is more probable for the Soom Shale Member, although a latest Ordovician age cannot be discounted. The age of the brachiopods in the overlying Disa Siltstone Member has been in contention for over a decade. Both Ashgillian and Early Llandovery ages have been proposed. The age of the underlying Soom Shale Member based on plant spores and trilobites (earliest Llandovery or latest Ashgillian) suggests that the Disa Siltstone Member is also likely to be of Early Llandovery age, although the distance between the Soom Shale Member spore-bearing locality and rocks to the south yielding abundant invertebrate body fossils at one locality is great enough to permit diachroneity.


2004 ◽  
Vol 58 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Stefan A. Rensing ◽  
Justine Kiessling ◽  
Ralf Reski ◽  
Eva L. Decker

2015 ◽  
Vol 290 (21) ◽  
pp. 13104-13114 ◽  
Author(s):  
Beatrix Dünschede ◽  
Chantal Träger ◽  
Christine Vera Schröder ◽  
Dominik Ziehe ◽  
Björn Walter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document