molecular machinery
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 199)

H-INDEX

63
(FIVE YEARS 11)

2021 ◽  
Author(s):  
Maxim Katsenelson ◽  
Ilana Shapira ◽  
Eman Abbas ◽  
Boaz Styr ◽  
Saba Aid ◽  
...  

Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling network-wide homeostatic response remains largely unknown. Here we show that deletion of insulin-like growth factor-1 receptor (IGF1R), a well-known regulator of neurodevelopment and ageing, limits firing rate homeostasis in response to inactivity, without altering the baseline firing rate distribution. Disruption of both synaptic and intrinsic homeostatic plasticity contributed to deficient firing rate homeostatic response. At the cellular level, a fraction of IGF1Rs was localized in mitochondria with the mitochondrial calcium uniporter complex (MCUc). IGF1R deletion suppressed mitochondrial Ca2+ (mitoCa2+) evoked by spike bursts by weakening mitochondria-to-cytosol Ca2+ coupling. This coupling was homeostatically maintained following inactivity in control, but upregulated in IGF1R-deficient neurons. MCUc overexpression in IGF1R-deficient neurons rescued the deficits in spike-to-mitoCa2+ coupling and firing rate homeostasis. Our findings highlight IGF1R as a key regulator of the integrated homeostatic response by tuning mitochondrial temporal filtering. Decline in mitochondrial reliability for burst transfer may drive dysregulation of firing rate homeostasis in brain disorders associated with abnormal IGF1R / MCUc signaling.


2021 ◽  
Author(s):  
Suvi Ruuskanen ◽  
Mikaela Hukkanen ◽  
Natacha Garcin ◽  
Nina Cossin-Sevrin ◽  
Bin-Yan Hsu ◽  
...  

Maternal hormones, such as thyroid hormones transferred to embryos and eggs, are key signalling pathways to mediate maternal effects. To be able to respond to maternal cues, embryos must express key molecular "machinery" of the hormone pathways, such as enzymes and receptors. While altricial birds begin thyroid hormone (TH) production only at/after hatching, experimental evidence suggests that their phenotype can be influenced by maternal THs deposited in the egg. However, it is not understood, how and when altricial birds express genes in the TH-pathway. For the first time, we measured the expression of key TH-pathway genes in altricial embryos, using two common altricial ecological model species (pied flycatcher, Ficedula hypoleuca and blue tit Cyanistes caeruleus). Deiodinase DIO1 gene expression could not be reliably confirmed in either species, but deiodinase enzyme DIO2 and DIO3 genes were expressed in both species. Given that DIO2 coverts T4 to biologically active T3, and DIO3 mostly T3 to inactive forms of thyroid hormones, our results suggest that embryos may modulate maternal signals. Thyroid hormone receptor (THRA and THRB) and monocarboxyl membrane transporter gene (SLC15A2) were also expressed, enabling TH-responses. Our results suggest that early altricial embryos may be able to respond and potentially modulate maternal signals conveyed by thyroid hormones.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2465
Author(s):  
Louis-Marie Bloyet

Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.


2021 ◽  
Author(s):  
Taylor D. Skokan ◽  
Bert Hobmayer ◽  
Kara L. McKinley ◽  
Ronald D. Vale

AbstractCells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Macropinocytosis is a versatile example of such a process, allowing for the indiscriminate and rapid uptake of large volumes of fluid and membrane. Much of the molecular machinery essential for macropinocytosis has been well established. However, most of these studies relied on tissue culture models, leaving the regulation of this process within the context of organs and organisms unresolved. Here, we report that large-scale macropinocytosis occurs in the outer epithelial layer of the cnidarian Hydra vulgaris. Exploiting Hydra’s relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time in living tissue, revealing constitutive engulfment across the entire body axis. Using pharmacological perturbations, we establish a role for stretch-activated channels, including Piezo, and downstream calcium influx in inhibiting this process. Finally, we show that the direct application of planar stretch leads to calcium influx and a corresponding inhibition of macropinocytosis. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and reveal a role for macropinocytosis in responding to membrane tension.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kaixuan Zhao ◽  
Guang Yang ◽  
Jia Yu ◽  
Yuxin Li ◽  
...  

Abstract Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic β cells and that its knockdown abrogates β cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) phosphorylating syndapin I/PACSIN 1, promoting interactions between syndapin I/PACSIN 1 and neural Wiskott-Aldrich syndrome protein (N-WASP) thereby driving β cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in β cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1789
Author(s):  
Dare E. George ◽  
Jetze J. Tepe

The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. In this review, we discuss the structure of proteasome and how proteasome’s proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.


Author(s):  
Gabriel E. Matos-Rodrigues ◽  
Rodrigo A. P. Martins

Several inherited human syndromes that severely affect organogenesis and other developmental processes are caused by mutations in replication stress response (RSR) genes. Although the molecular machinery of RSR is conserved, disease-causing mutations in RSR-genes may have distinct tissue-specific outcomes, indicating that progenitor cells may differ in their responses to RSR inactivation. Therefore, understanding how different cell types respond to replication stress is crucial to uncover the mechanisms of RSR-related human syndromes. Here, we review the ocular manifestations in RSR-related human syndromes and summarize recent findings investigating the mechanisms of RSR during eye development in vivo. We highlight a remarkable heterogeneity of progenitor cells responses to RSR inactivation and discuss its implications for RSR-related human syndromes.


2021 ◽  
Author(s):  
Uri Magaram ◽  
Connor Weiss ◽  
Aditya Vasan ◽  
Kirthi C Reddy ◽  
James Friend ◽  
...  

Ultrasound has been shown to affect the function of both neurons and non-neuronal cells. However, the underlying molecular machinery has been poorly understood. Here, we show that at least two mechanosensitive proteins act in parallel to generate C. elegans behavioral responses to ultrasound stimuli. We first show that these animals generate reversals in response to a single 10 msec pulse from a 2.25 MHz ultrasound transducer. Next, we show that the pore-forming subunit of the mechanosensitive channel TRP-4, and a DEG/ENaC/ASIC ion channel MEC-4, are both required for this ultrasound-evoked reversal response. Further, the trp-4 mec-4 double mutant shows a stronger behavioral deficit compared to either single mutant. Finally, overexpressing TRP-4 in specific chemosensory neurons can rescue the ultrasound-triggered behavioral deficit in the mec-4 null mutant, suggesting that these two pathways act in parallel. Together, we demonstrate that multiple mechanosensitive proteins likely cooperate to transform ultrasound stimuli into behavioral changes.


2021 ◽  
Vol 31 (6) ◽  
pp. 2856-2867
Author(s):  
Valerio Caputo ◽  
Claudia Strafella ◽  
Andrea Termine ◽  
Carlo Fabrizio ◽  
Paola Ruffo ◽  
...  

Epigenetics is characterized by molecular modifications able to shape gene expression profiles in response to inner and external stimuli. Therefore, epigenetic elements are able to provide intriguing and useful information for the comprehension and management of different human conditions, including aging process, and diseases. On this subject, Age-related Macular Degeneration (AMD) represents one of the most frequent age-related disorders, dramatically affecting the quality of life of older adults worldwide. The etiopathogenesis is characterized by an interplay among multiple genetic and non-genetic factors, which have been extensively studied. Nevertheless, a deeper dissection of molecular machinery associated with risk, onset, progression and effectiveness of therapies is still missing. In this regard, epigenetic signals may be further explored to disentangle disease etiopathogenesis, the possible therapeutic avenues and the differential response to AMD treatment. This review will discuss the epigenomic signatures mostly investigated in AMD, which could be applied to improve the knowledge of disease mechanisms and to set-up novel or modified treatment options.


Sign in / Sign up

Export Citation Format

Share Document