physcomitrella patens
Recently Published Documents


TOTAL DOCUMENTS

874
(FIVE YEARS 196)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Amanda Jane Dowson ◽  
Adrian J Lloyd ◽  
Andrew C. Cuming ◽  
David I Roper ◽  
Lorenzo Frigerio ◽  
...  

An accumulation of evidence suggests that peptidoglycan, consistent with a bacterial cell wall, is synthesised around the chloroplasts of many photosynthetic eukaryotes, from glaucophyte algae to land plants at least as evolved as pteridophyte ferns, but the biosynthetic pathway has not been demonstrated. We employed mass spectrometry and enzymology in a two fold approach to characterize the synthesis of peptidoglycan in chloroplasts of the moss Physcomitrium (Physcomitrella) patens. To drive the accumulation of peptidoglycan pathway intermediates, P.patens was cultured with the antibiotics phosphomycin, D-cycloserine and carbenicillin, which inhibit key peptidoglycan pathway proteins in bacteria. Mass spectrometry of the TCA-extracted moss metabolome revealed elevated levels of five of the predicted intermediates from UDP-GlcNAc through to the UDP-MurNAc-D,L-diaminopimelate (DAP)-pentapeptide. Most Gram negative bacteria, including cyanobacteria, incorporate meso-diaminopimelate (D,L-DAP) into the third residue of the stem peptide of peptidoglycan, as opposed to L-Lysine, typical of most Gram positive bacteria. To establish the specificity of D,L-DAP incorporation into the P.patens precursors, we analysed the recombinant protein that appends the third stem peptide amino acid, UDP-MurNAc-tripeptide ligase (MurE), from both P.patens and the cyanobacterium Anabaena sp. strain PCC 7120. Both ligases incorporated D,L-DAP in almost complete preference to L-Lys, consistent with the mass spectrophotometric data, with catalytic efficiencies similar to previously documented Gram negative bacterial MurE ligases. We discuss how these data accord with the conservation of active site residues common to DL-DAP-incorporating bacterial MurE ligases and of the probability of a horizontal gene transfer event within the plant peptidoglycan pathway.


2021 ◽  
Vol 3 ◽  
Author(s):  
Lei Zhu

Targeted gene knockout is particularly useful for analyzing gene functions in plant growth, signaling, and development. By transforming knockout cassettes consisting of homologous sequences of the target gene into protoplasts, the classical gene targeting method aims to obtain targeted gene replacement, allowing for the characterization of gene functions in vivo. The moss Physcomitrella patens is a known model organism for a high frequency of homologous recombination and thus harbors a remarkable rate of gene targeting. Other moss features, including easy to culture, dominant haploidy phase, and sequenced genome, make gene targeting prevalent in Physcomitrella patens. However, even gene targeting was powerful to generate knockouts, researchers using this method still experienced technical challenges. For example, obtaining a good number of targeted knockouts after protoplast transformation and regeneration disturbed the users. Off-target mutations such as illegitimate random integration mediated by nonhomologous end joining and targeted insertion wherein one junction on-target but the other end off-target is commonly present in the knockouts. Protoplast fusion during transformation and regeneration was also a problem. This review will discuss the advantages and technical challenges of gene targeting. Recently, CRISPR-Cas9 is a revolutionary technology and becoming a hot topic in plant gene editing. In the second part of this review, CRISPR-Cas9 technology will be focused on and compared to gene targeting regarding the practical use in Physcomitrella patens. This review presents an updated perspective of the gene targeting and CRISPR-Cas9 techniques to plant biologists who may consider studying gene functions in the model organism Physcomitrella patens.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Claudio Delgadillo-Moya

Background: Mexican botanists were not involved in bryophyte research fifty years ago; only four small floristic contributions were published between 1942-1958. Questions: What has been learned in the last fifty years? How many bryophytes are there in Mexico? What are the contributions by Mexican scientists? Studied species: Bryophyte flora. Study site and dates: Mexico, between 1942-2021. Methods:  Bibliographic compilations were used to revise the status of bryophyte research in Mexico. Data for the last fifty years cited there and in an updated version of Latmoss served to determine the current knowledge of Mexican bryophytes as contributed by Mexican scientists. No thesis research was considered unless published in a scientific journal. Results: There are 16 species of Anthocerotophyta, ca. 600 of Marchantiophyta, and 997 Bryophyta in Mexico. At least seven phytogeographic elements are represented: Northern, Meso-American, Caribbean, Southern, Wide distribution, and Endemic. Highlights of Mexican research include the discovery of Hypnodontopsis sp., a Miocene amber fossil from Chiapas, identification of heavy metals deposits in urban mosses in Mexico City and Toluca, determination of chloroplast and mitochondrial genomes of Pseudocrossidium replicatum, and the potential use of recombinant proteins from Physcomitrella patens. Conclusions: Taxonomic and floristic studies should be continued along with the bryological exploration of the country. Conservation is urgent, but studies of drought tolerance, air pollution, climate change, and potential uses in medicine require support and collaboration from other scientists.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1588
Author(s):  
Jing Yang ◽  
Zhonglong Guo ◽  
Wentao Wang ◽  
Xiaoyan Cao ◽  
Xiaozeng Yang

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play critical roles in regulating diverse aspects of plant growth and development, including vegetative phase change, plant architecture, anthocyanin accumulation, lateral root growth, etc. In the present study, 15 SPL genes were identified based on the genome data of Codonopsis pilosula, a well-known medicinal plant. Phylogenetic analysis clustered CpSPLs into eight groups (G1-G8) along with SPLs from Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Physcomitrella patens. CpSPLs in the same group share similar gene structure and conserved motif composition. Cis-acting elements responding to light, stress and phytohormone widely exist in their promoter regions. Our qRT-PCR results indicated that 15 CpSPLs were differentially expressed in different tissues (root, stem, leaf, flower and calyx), different developmental periods (1, 2 and 3 months after germination) and various conditions (NaCl, MeJA and ABA treatment). Compared with the control, overexpression of CpSPL2 or CpSPL10 significantly promoted not only the growth of hairy roots, but also the accumulation of total saponins and lobetyolin. Our results established a foundation for further investigation of CpSPLs and provided novel insights into their biological functions. As far as we know, this is the first experimental research on gene function in C. pilosula.


2021 ◽  
Author(s):  
Mauricio Lopez-Obando ◽  
Ambre Guillory ◽  
François-Didier Boyer ◽  
David Cornu ◽  
Beate Hoffmann ◽  
...  

Abstract In angiosperms, the α/β hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely non-canonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (−)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity towards (−)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. By contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Sign in / Sign up

Export Citation Format

Share Document