genomic changes
Recently Published Documents


TOTAL DOCUMENTS

619
(FIVE YEARS 237)

H-INDEX

51
(FIVE YEARS 9)

2023 ◽  
Vol 83 ◽  
Author(s):  
Z. Hussain ◽  
Y. Sun ◽  
S. H. Shah ◽  
H. Khan ◽  
S. Ali ◽  
...  

Abstract Hybridization and Polyploidization are most common of the phenomenon observed in plants, especially in the genus Nicotiana leading to the duplication of genome. Although genomic changes associated with these events has been studied at various levels but the genome size and GC content variation is less understood because of absence of sufficient genomic data. In this study the flow cytometry technique was used to uncover the genome size and GC contents of 46 Nicotiana species and we compared the genomic changes associated with the hybridization events along evolutionary time scale. The genome size among Nicotiana species varied between 3.28 pg and 11.88 pg whereas GC contents varied between 37.22% and 51.25%. The tetraploid species in genus Nicotiana including section Polydiclae, Repandae, Nicotiana, Rustica and Sauveolentes revealed both up and downsizing in their genome sizes when compared to the sum of genomes of their ancestral species. The genome sizes of three homoploid hybrids were found near their ancestral species. Loss of large genome sequence was observed in the evolutionary more aged species (>10 Myr) as compared to the recently evolved one’s (<0.2 Myr). The GC contents were found homogenous with a mean difference of 2.46% among the Nicotiana species. It is concluded that genome size change appeared in either direction whereas the GC contents were found more homogenous in genus Nicotiana.


2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Cecilia Estalles ◽  
Sheela P. Turbek ◽  
María José Rodríguez-Cajarville ◽  
Luís Fábio Silveira ◽  
Kazumasa Wakamatsu ◽  
...  

Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns—which involve combinations of multiple colour patches across the body—can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype–phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yutaka Okabe ◽  
Akira Shudo

AbstractViruses constantly undergo mutations with genomic changes. The propagation of variants of viruses is an interesting problem. We perform numerical simulations of the microscopic epidemic model based on network theory for the spread of variants. Assume that a small number of individuals infected with the variant are added to widespread infection with the original virus. When a highly infectious variant that is more transmissible than the original lineage is added, the variant spreads quickly to the wide space. On the other hand, if the infectivity is about the same as that of the original virus, the infection will not spread. The rate of spread is not linear as a function of the infection strength but increases non-linearly. This cannot be explained by the compartmental model of epidemiology but can be understood in terms of the dynamic absorbing state known from the contact process.


2022 ◽  
Author(s):  
Daniel Divin ◽  
Mercedes Gomez Samblas ◽  
Nithya Kuttiyarthu Veetil ◽  
Eleni Voukali ◽  
Zuzana Swiderska ◽  
...  

In vertebrates, an ancient duplication in the genes for cannabinoid receptors (CNRs) allowed the evolution of specialised endocannabinoid receptors expressed in the brain (CNR1) and the periphery (CNR2). While dominantly conserved throughout vertebrate phylogeny, our comparative genomic analysis suggests that certain taxa may have lost either the CNR1 regulator of neural processes or, more frequently, the CNR2 involved in immune regulation. Focussing on conspicuous CNR2 pseudogenization in parrots (Psittaciformes), a diversified crown lineage of cognitively-advanced birds, we highlight possible functional effects of such a loss. Parrots appear to have lost the CNR2 gene at at least two separate occasions due to chromosomal rearrangement. Using gene expression data from the brain and periphery of birds with experimentally-induced sterile inflammation, we compare CNR and inflammatory marker (interleukin 1 beta, IL1B) expression patterns in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Though no significant changes in CNR expression were observed in either parrots or passerines during inflammation of the brain or periphery, we detected a significant up-regulation of IL1B expression in the brain after stimulation with lipopolysaccharide (LPS) only in parrots. As our analysis failed to show evidence for selection on altered CNR1 functionality in parrots, compared to other birds, CNR1 is unlikely to be involved in compensation for CNR2 loss in modulation of the neuroimmune interaction. Thus, our results provide evidence for the functional importance of CNR2 pseudogenization for regulation of neuroinflammation.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Francesco Blasio ◽  
Pilar Prieto ◽  
Mónica Pradillo ◽  
Tomás Naranjo

Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.


2021 ◽  
Author(s):  
Mehrman Chalaki ◽  
Luis J. Cruz ◽  
Sabien G. A. van Neerven ◽  
Joost Verhaagen ◽  
Albert Dahan ◽  
...  

The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wenzhi Jiang ◽  
Jenifer Bush ◽  
Jen Sheen

The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in Arabidopsis thaliana, Nicotiana benthamiana, Brassica rapa, and Camelina sativa. Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts. To facilitate facile testing of any Cas9 RNP designs, we developed two GFP reporter genes, which led to sensitive detection of nonhomologous end joining (NHEJ) and homology-directed repair (HDR), with editing efficiency up to 85 and 50%, respectively. When co-transfected with an optimal single-stranded oligodeoxynucleotide (ssODN) donor, precise editing of the AtALS gene via HDR reached 7% by RNPs. Significantly, precise mutagenesis mediated by preassembled primer editor (PE) RNPs led to 50% GFP reporter gene recovery in protoplasts and up to 4.6% editing frequency for the specific AtPDS mutation in the genome. The rapid, versatile and efficient gene editing by CRISPR RNP variants in protoplasts provides a valuable platform for development, evaluation and optimization of new designs and tools in gene and genomic manipulation and is applicable in diverse plant species.


2021 ◽  
Author(s):  
Thalita S Berteli ◽  
Fang Wang ◽  
Fabiana B Kohlrausch ◽  
Caroline M. Da Luz ◽  
Fernanda V. Oliveira ◽  
...  

Abstract Objective: Millions of babies have been conceived by IVF, yet debate about its safety to offspring continues. We hypothesized that superovulation and in vitro fertilization (IVF) promote genomic changes, including altered telomere length (TL) and activation of the retrotransposon LINE-1 (L1), and tested this hypothesis in a mouse model. Material and methods: Experimental study analyzing TL and L1 copy number in C57BL/6J mouse blastocysts in vivo produced from natural mating cycles (N), in vivo produced following superovulation (S), or in vitro produced following superovulation (IVF). We also examined the effects of prolonged culture on TL and L1 copy number in the IVF group comparing blastocysts cultured 96 hours versus blastocysts cultured 120 hours. TL and L1 copy number were measured by Real Time PCR. Results: TL in S (n=77; Mean: 1.50± 1.15; p=0.0007) and IVF (n=82; Mean: 1.72± 1.44; p<0.0001) exceeded that in N (n=16; Mean: 0.61± 0.27). TL of blastocysts cultured 120 hours (n=15, Mean: 2.14± 1.05) was significantly longer than that of embryos cultured for 96 hours (n=67, Mean: 1.63 ± 1.50; p=0.0414). L1 copy number of blastocysts cultured for 120 hours (n=15, Mean: 1.71± 1.49) exceeded that of embryos cultured for 96 hours (n=67, Mean: 0.95 ± 1.03; p=0.0162). Conclusions: Intriguingly ovarian stimulation, alone or followed by IVF, produced embryos with significantly longer telomeres compared to in vivo, natural cycle-produced embryos. The significance of this enriched telomere endowment for the health and longevity of offspring born from IVF merit future studies.


Author(s):  
Xiaoqin Wu ◽  
Alexey E. Kazakov ◽  
Sara Gushgari-Doyle ◽  
Xingli Yu ◽  
Valentine Trotter ◽  
...  

Phylogenetically closely related bacteria can thrive in diverse environmental habitats due to adaptive evolution. Genomic changes resulting from adaptive evolution lead to variations in cellular function, metabolism, and secondary metabolite biosynthesis.


2021 ◽  
pp. 1-9
Author(s):  
Emine Ikbal Atli ◽  
Sinem Yalcintepe ◽  
Engin Atli ◽  
Selma Demir ◽  
Cisem Mail ◽  
...  

Chromosome 16 is one of the gene-rich chromosomes; however, approximately 10% of the chromosome 16 sequence is composed of segmental copies, which renders this chromosome instable and predisposes it to rearrangements via frequent nonallelic homologous recombination. Microarray technologies have enabled the analysis of copy number variations (CNV), which may be associated with the risk of developing complex diseases. Through comparative genomic hybridisation in 1,298 patients, we detected 18 cases with chromosome 16 CNV. We identified 2recurrent CNV regions, including 1 at 16p13.11 in 4 patients and another at 16p11.2 in 7 patients. We also detected atypical chromosome 16 rearrangements in 7 patients. Furthermore, we noted an increased frequency of co-occurring genomic changes, supporting the two-hit hypothesis to explain the phenotypic variability in the clinical presentation of CNV syndromes. Our findings can contribute to the creation of a chromosome 16 disease map based on regions that may be associated with disease development.


Sign in / Sign up

Export Citation Format

Share Document