scholarly journals Free Vibration Analysis of Composite Plates via Refined Theories Accounting for Uncertainties

2011 ◽  
Vol 18 (4) ◽  
pp. 537-554 ◽  
Author(s):  
G. Giunta ◽  
E. Carrera ◽  
S. Belouettar

The free vibration analysis of composite thin and relatively thick plates accounting for uncertainty is addressed in this work. Classical and refined two-dimensional models derived via Carrera's Unified Formulation (CUF) are considered. Material properties and geometrical parameters are supposed to be random. The fundamental frequency related to the first bending eigenmode is stochastically described in terms of the mean value, the standard deviation, the related confidence intervals and the cumulative distribution function. The Monte Carlo Method is employed to account for uncertainty. Cross-ply, simply supported, orthotropic plates are accounted for. Symmetric and anti-symmetric lay-ups are investigated. Displacements based and mixed two-dimensional theories are adopted. Equivalent single layer and layer wise approaches are considered. A Navier type solution is assumed. The conducted analyses have shown that for the considered cases, the fundamental natural frequency is not very sensitive to the uncertainty in the material parameters, while uncertainty in the geometrical parameters should be accounted for. In the case of thin plates, all the considered models yield statistically matching results. For relatively thick plates, the difference in the mean value of the natural frequency is due to the different number of degrees of freedom in the model.

Author(s):  
AR Setoodeh ◽  
M Ghorbanzadeh ◽  
P Malekzadeh

In this article, free vibration analysis of elastically supported sandwich beams with functionally graded face sheets subjected to thermal environment is presented. In order to accurately include the transverse shear deformation and the inertia effects, two-dimensional elasticity theory is used to formulate the problem. The layerwise theory in conjunction with the differential quadrature method is employed to discretize the governing equations in the thickness and axial directions, respectively. The material properties of functionally graded face sheets are assumed to be temperature-dependent and graded in the thickness direction according to a power-law distribution. For the purpose of comparison, the problem under consideration is also solved using two-dimensional finite element method and the first-order shear deformation theory. The accuracy, convergence, and versatility of the method are demonstrated by comparing the results with those of the two aforementioned approaches and also with the existing solutions in literature. Eventually, some new numerical results are presented which depict the effects of different material and geometrical parameters on natural frequencies and mode shapes of the beam.


2009 ◽  
Vol 323 (1-2) ◽  
pp. 366-384 ◽  
Author(s):  
S.H. Hashemi ◽  
S. Farhadi ◽  
S. Carra

2018 ◽  
Vol 4 (2) ◽  
pp. 61
Author(s):  
Yaprak Itır Özdemir

The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin’s theory with first order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency parameters of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using first order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 4-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 4-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


Sign in / Sign up

Export Citation Format

Share Document