scholarly journals Spline-Interpolation-Based FFT Approach to Fast Simulation of Multivariate Stochastic Processes

2011 ◽  
Vol 2011 ◽  
pp. 1-24 ◽  
Author(s):  
Jinhua Li ◽  
Chunxiang Li ◽  
Shuisheng Chen

The spline-interpolation-based fast Fourier transform (FFT) algorithm, designated as the SFFT algorithm, is proposed in the present paper to further enhance the computational speed of simulating the multivariate stochastic processes. The proposed SFFT algorithm first introduces the spline interpolation technique to reduce the number of the Cholesky decomposition of a spectral density matrix and subsequently uses the FFT algorithm to further enhance the computational speed. In order to highlight the superiority of the SFFT algorithm, the simulations of the multivariate stationary longitudinal wind velocity fluctuations have been carried out, respectively, with resorting to the SFFT-based and FFT-based spectral representation SR methods, taking into consideration that the elements of cross-power spectral density matrix are the complex values. The numerical simulation results show that though introducing the spline interpolation approximation in decomposing the cross-power spectral density matrix, the SFFT algorithm can achieve the results without a loss of precision with reference to the FFT algorithm. In comparison with the FFT algorithm, the SFFT algorithm provides much higher computational efficiency. Likewise, the superiority of the SFFT algorithm is becoming more remarkable with the dividing number of frequency, the number of samples, and the time length of samples going up.

2011 ◽  
Vol 368-373 ◽  
pp. 1253-1258
Author(s):  
Jun Jie Luo ◽  
Cheng Su ◽  
Da Jian Han

A model is proposed to simulate multivariate weakly stationary Gaussian stochastic processes based on the spectral representation theorem. In this model, the amplitude, phase angle, and frequency involved in the harmonic function are random so that the generated samples are real stochastic processes. Three algorithms are then adopted to improve the simulation efficiency. A uniform cubic B-spline interpolation method is employed to fit the target factorized power spectral density function curves. A recursive algorithm for the Cholesky factorization is utilized to decompose the cross-power spectral density matrices. Some redundant cosine terms are cut off to decrease the computation quantity of superposition. Finally, an example involving simulation of turbulent wind velocity fluctuations is given to validate the capability and accuracy of the proposed model as well as the efficiency of the optimal algorithms.


2008 ◽  
Vol 103 (7) ◽  
pp. 07B120 ◽  
Author(s):  
Isaak D. Mayergoyz ◽  
Claudio Serpico ◽  
Giorgio Bertotti ◽  
Roberto Bonin ◽  
Massimiliano d’Aquino

Author(s):  
George Deodatis ◽  
Radu Popescu ◽  
Jean H. Prevost

Abstract Two of the latest developments concerning the spectral representation method (used to simulate stochastic processes and fields) are presented in this paper. The first one introduces an extension of the spectral representation method to simulate non-stationary stochastic vector processes with evolutionary power. The proposed simulation formula is simple and straightforward and generates sample functions of the vector process according to a prescribed non-stationary cross-spectral density matrix. The second development introduces another extension of the spectral representation method to simulate multi-dimensional, multi-variate, non-Gaussian stochastic fields. In this case, sample functions are generated according to a prescribed cross-spectral density matrix and prescribed (non-Gaussian) probability distribution functions. Numerical examples are provided for both developments.


Sign in / Sign up

Export Citation Format

Share Document