scholarly journals Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine fromLycium barbarum(Goji Berry) in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. K. Song ◽  
B. D. Roufogalis ◽  
T. H. W. Huang

Diabetic retinopathy is a preventable microvascular diabetic complication and a leading cause of vision loss. Retinal pigment epithelial cell apoptosis is an early event in diabetic retinopathy. Taurine is reportedly beneficial for diabetic retinopathy and is abundant in the fruit ofLycium barbarum(LB). We have investigated the effect of pure taurine and an extract of LB rich in taurine on a model of diabetic retinopathy, the retinal ARPE-19 cell line exposed to high glucose. We demonstrate for the first time that LB extract and the active ligand, taurine, dose dependently enhance cell viability following high glucose treatment in the ARPE-19 retinal epithelial cell line. This cytoprotective effect was associated with the attenuation of high glucose-induced apoptosis, which was shown by characteristic morphological staining and the dose-dependent decrease in the number of apoptotic cells, determined by flow cytometry. Moreover, we have shown that LB extract and taurine dose dependently downregulate caspase-3 protein expression and the enzymatic activity of caspase-3. We conclude that taurine, a major component of LB, and the LB extract, have a cytoprotective effect against glucose exposure in a human retinal epithelial cell line and may provide useful approaches to delaying diabetic retinopathy progression.

2020 ◽  
Vol 167 (5) ◽  
pp. 495-502 ◽  
Author(s):  
Xuejiao Wang ◽  
Hui Li ◽  
Hao Wang ◽  
Jingyun Shi

Abstract Quercetin is a kind of distinctive bioactive flavonoid that has potent anti-oxidant, anti-inflammatory and anti-diabetic properties. The present article was designed to check the effect of quercetin on diabetic retinopathy. Adult retinal pigment epithelial cell line (ARPE)-19 cells were pre-treated with quercetin and then stimulated by high glucose. Cell damage was evaluated by CCK-8 assay, flow cytometer, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, 2,7-dichlorofluorescein diacetate probe and western blot. The association between quercetin and miR-29b expression as well as the downstream pathways was studied by qRT-PCR and western blot. Pre-treating ARPE-19 cells with quercetin clearly attenuated high glucose-induced viability loss, apoptosis, MCP-1 and IL-6 overproduction and reactive oxygen species (ROS) generation. Quercetin down-regulated p53, Bax and cleaved-caspase-3 expression, while up-regulated CyclinD1, CDK4 and Bcl-2. miR-29b was low expressed in high glucose-treated cell, but quercetin elevated its expression. Moreover, the protective action of quercetin towards ARPE-19 cells was attenuated when miR-29b was suppressed. Also, quercetin promoted PTEN/AKT pathway, while inhibited NF-κB pathway via a miR-29b-dependent way. These data illustrated quercetin possibly possess the anti-diabetic retinopathy potential, as quercetin clearly attenuated high glucose-evoked damage in ARPE-19 cells. The protective action of quercetin may due to its regulation on miR-29b expression as well as PTEN/AKT and NF-κB pathways.


Sign in / Sign up

Export Citation Format

Share Document