scholarly journals Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Closed Boundary Conditions

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hilmi Ergören ◽  
Adem Kiliçman

We investigate some existence results for the solutions to impulsive fractional differential equations having closed boundary conditions. Our results are based on contracting mapping principle and Burton-Kirk fixed point theorem.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Naveed Ahmad ◽  
Zeeshan Ali ◽  
Kamal Shah ◽  
Akbar Zada ◽  
Ghaus ur Rahman

We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to demonstrate our main theoretical results.


Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper is concerned with the fractional separated boundary value problem of fractional differential equations with fractional impulsive conditions. By means of the Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xi Fu ◽  
Xiaoyou Liu

This paper studies the existence results for nonseparated boundary value problems of fractional differential equations with fractional impulsive conditions. By means of Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.


2021 ◽  
Vol 5 (4) ◽  
pp. 200
Author(s):  
Fatemeh Mottaghi ◽  
Chenkuan Li ◽  
Thabet Abdeljawad ◽  
Reza Saadati ◽  
Mohammad Bagher Ghaemi

Using Krasnoselskii’s fixed point theorem and Arzela–Ascoli theorem, we investigate the existence of solutions for a system of nonlinear ϕ-Hilfer fractional differential equations. Moreover, applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. We also apply our main results to study the existence and Kummer stability of Lotka–Volterra’s equations that are useful to describe and characterize the dynamics of biological systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Eskandar Ameer ◽  
Hassen Aydi ◽  
Hüseyin Işık ◽  
Muhammad Nazam ◽  
Vahid Parvaneh ◽  
...  

In this paper, we show that a sequence satisfying a Suzuki-type JS-rational contraction or a generalized Suzuki-type Ćirić JS-contraction, under some conditions, is a Cauchy sequence. This paper presents some common fixed point theorems and an application to resolve a system of nonlinear fractional differential equations. Some examples and consequences are also given.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Weihua Jiang ◽  
Jiqing Qiu ◽  
Weiwei Guo

We investigate the existence of at least two positive solutions to eigenvalue problems of fractional differential equations with sign changing nonlinearities in more generalized boundary conditions. Our analysis relies on the Avery-Peterson fixed point theorem in a cone. Some examples are given for the illustration of main results.


Sign in / Sign up

Export Citation Format

Share Document