scholarly journals A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Meixia Li ◽  
Haitao Che

Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic) convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhensheng Yu ◽  
Zilun Wang ◽  
Ke Su

In this paper, a double nonmonotone quasi-Newton method is proposed for the nonlinear complementarity problem. By using 3-1 piecewise and 4-1 piecewise nonlinear complementarity functions, the nonlinear complementarity problem is reformulated into a smooth equation. By a double nonmonotone line search, a smooth Broyden-like algorithm is proposed, where a single solution of a smooth equation at each iteration is required with the reduction in the scale of the calculation. Under suitable conditions, the global convergence of the algorithm is proved, and numerical results with some practical applications are given to show the efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document