scholarly journals Delay-Dependent Stability Analysis for Recurrent Neural Networks with Time-Varying Delays

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Shu Lv ◽  
Junkang Tian ◽  
Shouming Zhong

This paper concerns the problem of delay-dependent stability criteria for recurrent neural networks with time varying delays. By taking more information of states and activation functions as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.

2014 ◽  
Vol 513-517 ◽  
pp. 922-926
Author(s):  
Ze Rong Ren ◽  
Xiang Jun Xie

This paper is concerned with the problem of delay-dependent asymptotic stability criterion for recurrent neural networks with time-varying delays. A new Lyapunov functional is introduced by considering the information of neuron activation functions adequately. By using the improved delay-partitioning method and reciprocally convex approach, a less conservative stability criterion is obtained in terms of linear matrix inequalities (LMIs). A numerical example is finally given to illustrate the effectiveness of the derived method.


2015 ◽  
Vol 93 (4) ◽  
pp. 398-408 ◽  
Author(s):  
O.M. Kwon ◽  
M.J. Park ◽  
S.M. Lee ◽  
E.J. Cha

This paper proposes new delay-dependent stability criteria for discrete-time neural networks with interval time-varying delays and probabilistic occurring parameter uncertainties. It is assumed that parameter uncertainties are changed with the environment, explored using random situations, and its stochastic information is included in the proposed method. By constructing a suitable Lyapunov–Krasovskii functional, new delay-dependent stability criteria for the concerned systems are established in terms of linear matrix inequalities, which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14
Author(s):  
Xing Yin ◽  
Jun Li ◽  
Weigen Wu ◽  
Qiranrong Tan

This paper deals with the problem of delay-dependent stability criterion of uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF) and free-weighting matrix approach (FWM), some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yanmeng Wang ◽  
Lianglin Xiong ◽  
Yongkun Li ◽  
Haiyang Zhang ◽  
Chen Peng

This paper considers the delay-dependent stability analysis of neutral-type Lur’e systems with time-varying delays and sector bounded nonlinearities. First of all, using constructed function methods, a new Jensen-like inequality is introduced to obtain less conservative results. Second, a new class of Lyapunov-Krasovskii functional (LKF) is constructed according to the characteristic of the considered systems. Third, combining with the new inequality and reciprocal convex approach and some other inequality techniques, the new less conservative robust stability criteria are shown in the form of linear matrix inequalities (LMIs). Finally, three examples demonstrate the feasibility and the superiority of our methods.


Sign in / Sign up

Export Citation Format

Share Document