improved stability
Recently Published Documents


TOTAL DOCUMENTS

1777
(FIVE YEARS 566)

H-INDEX

74
(FIVE YEARS 18)

2022 ◽  
Author(s):  
Shitong Wang ◽  
Heng Jiang ◽  
Yanhao Dong ◽  
David Clarkson ◽  
He Zhu ◽  
...  

Proton conduction underlies many important electrochemical technologies. We report a series of new proton electrolytes: acid-in-clay electrolyte termed AiCE, prepared by integrating fast proton carriers in a natural phyllosilicate clay network, that can be made into thin-film (tens of microns) fluid-impervious membranes. The chosen example systems (sepiolite-phosphoric acid) rank top among the solid proton conductors in consideration of proton conductivities (15 mS cm−1 at 25 °C, 0.023 mS cm−1 at −82 °C), the stability window (3.35 V), and reduced chemical activity. A solid-state proton battery was assembled using AiCE as the electrolyte to demonstrate the performance of these electrolytes. Benefitting from the wider electrochemical stability window, reduced corrosivity, and excellent ionic selectivity of AiCE, the two main problems (gasification and cyclability) of proton batteries have been successfully solved. This work also draws the attention of elemental cross-over in proton batteries and illustrates a simple “acid-in-clay” approach to synthesize a series of solid proton electrolytes with a superfast proton permeability, outstanding selectivity, and improved stability for many potential applications associated with protons.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Hyukjoon Kwon ◽  
Sang Jeen Hong

To minimize wafer yield losses by misprocessing during semiconductor manufacturing, faster and more accurate fault detection during the plasma process are desired to increase production yields. Process faults can be caused by abnormal equipment conditions, and the performance drifts of the parts or components of complicated semiconductor fabrication equipment are some of the most unnoticed factors that eventually change the plasma conditions. In this work, we propose improved stability and accuracy of process fault detection using optical emission spectroscopy (OES) data. Under a controlled experimental setup of arbitrarily induced fault scenarios, the extended isolation forest (EIF) approach was used to detect anomalies in OES data compared with the conventional isolation forest method in terms of accuracy and speed. We also used the OES data to generate features related to electron temperature and found that using the electron temperature features together with equipment status variable identification data (SVID) and OES data improved the prediction accuracy of process/equipment fault detection by a maximum of 0.84%.


Author(s):  
Alar Heinsaar ◽  
Indrek Kivi ◽  
Priit Moller ◽  
Kuno Kooser ◽  
Tanel Käämbre ◽  
...  

Abstract (La0.6Sr0.4)0.99CoO3−δ is a very promising cathode material due to its excellent electronic and ionic conductivity. However, when using non-artificial air from the ambient atmosphere, it contains impurities such as H2O and CO2. These chemicals cause degradation and performance loss of the cathode. Introduction of Ti into the B-site of (La0.6Sr0.4)0.99CoO3−δ improves the chemical stability of this material. (La0.6Sr0.4)0.99Co1−xTixO3−δ (0 ≤ x ≥ 0.1) electrodes prepared in this work were analyzed using X-ray diffraction method (XRD), X-ray photoelectron spectroscopy (XPS), and with electrochemical impedance spectroscopy (EIS). Studied (La0.6Sr0.4)0.99CoO3−δ materials with Ti in B-site showed reversible degradation under gas mixture with carbon dioxide addition. Under gas mixture with water addition, improved stability was observed for (La0.6Sr0.4)0.99Co1−xTixO3−δ materials with Ti in B-site compared to unmodified (La0.6Sr0.4)0.99CoO3−δ.


2022 ◽  
Vol 8 (1) ◽  
pp. 71
Author(s):  
Hamed M. El-Shora ◽  
Aiah M. Khateb ◽  
Doaa B. Darwish ◽  
Reyad M. El-Sharkawy

Environmental pollution due to the continuous uncontrolled discharge of toxic dyes into the water bodies provides insight into the need to eliminate pollutants prior to discharge is significantly needed. Recently, the combination of conventional chemotherapeutic agents and nanoparticles has attracted considerable attention. Herein, the magnetic nanoparticles (Fe3O4-NPs) were synthesized using metabolites of Aspergillus niger. Further, the surfaces of Fe3O4-NPs were functionalized using 3-mercaptoproionic acid as confirmed by XRD, TEM, and SEM analyses. A purified P. expansum laccase was immobilized onto Fe3O4/3-MPA-SH and then the developed immobilized laccase (Fe3O4/3-MPA-S-S-laccase) was applied to achieve redox-mediated degradation of different dyes. The Fe3O4/3-MPA-S-S-laccase exhibited notably improved stability toward pH, temperature, organic solvents, and storage periods. The Fe3O4/3-MPA-S-S-laccase exhibited appropriate operational stability while retaining 84.34% of its initial activity after 10 cycles. The catalytic affinity (Kcat/Km) of the immobilized biocatalyst was increased above 10-fold. The experimental data showed remarkable improvement in the dyes’ decolorization using the immobilized biocatalyst in the presence of a redox mediator in seven successive cycles. Thus, the prepared novel nanocomposite-laccase can be applied as an alternative promising strategy for bioremediation of textile wastewater. The cytotoxic level of carboplatin and Fe3O4-NPs singly or in combination on various cell lines was concentration-dependent.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yang Bai ◽  
Lin Wang ◽  
Lisheng Zhao ◽  
E. Lingling ◽  
Shuo Yang ◽  
...  

Objectives. In this study, a new type of dental implant by covering the surface of the titanium (Ti) implant with zinc-magnesium (Zn-Mg) alloy was designed, to study the antibacterial and antioxidant effects of Mg alloy on titanium (Ti) implants in oral implant restoration. Methods. Human gingival fibroblasts (HGFs), S. sanguinis, and F. nucleatum bacteria were used to detect the bioactivity and antibacterial properties of Mg alloy-coated Ti implants. In addition, B6/J mice implanted with different materials were used to further detect their antibacterial and antioxidant properties. Results. The results showed that Mg alloy could better promote the adhesion and proliferation and improve the alkaline phosphatase (ALP) activity of HGFs, which contributed to better improved stability of implant osseointegration. In addition, Mg alloy could better inhibit the proliferation of S. sanguinis, while no significant difference was found in the proliferation of F. nucleatum between the two implants. In the mouse model, the peripheral inflammatory reaction and oxidative stress of the Mg alloy implant were significantly lower than those of the Ti alloy implant. Conclusions. Zn-Mg alloy-coated Ti implants could better inhibit the growth of Gram-positive bacteria in the oral cavity, inhibit oxidative stress, and facilitate the proliferation activity of HGFs and the potential of osteoblast differentiation, thus, better increasing the stability of implant osseointegration.


2022 ◽  
pp. 119138
Author(s):  
Huangjingyi Chen ◽  
Liang Liu ◽  
Feier Chen ◽  
Yimin Fan ◽  
Qiang Yong

Author(s):  
Noor Titan Putri Hartono ◽  
Marie-Hélène Tremblay ◽  
Sarah Wieghold ◽  
Benjia Dou ◽  
Janak Thapa ◽  
...  

Incorporating a low dimensional (LD) perovskite capping layer on top of perovskite absorber, improves the stability of perovskite solar cells (PSCs). However, in the case of mixed-halide perovskites, which can...


Sign in / Sign up

Export Citation Format

Share Document