scholarly journals Second Law Analysis of Laminar Flow in a Circular Pipe Immersed in an Isothermal Fluid

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Vishal Anand ◽  
Krishna Nelanti

Entropy generation and pumping power to heat transfer ratio (PPR) of a laminar flow, for a circular tube immersed in an isothermal fluid, are studied analytically in this paper. Two different fluids, namely, water and ethylene glycol, are chosen to study the influence of fluid properties on entropy generation and PPR. The expressions for dimensionless entropy generation, Bejan number and PPR are derived in a detailed way and their variations with Reynolds number, external Biot number, and the dimensionless temperature difference are illustrated. The results of the analysis are compared with those for a laminar flow in a circular tube with uniform wall temperature boundary condition. Finally, a criterion is established to determine which type of thermal boundary conditions is more suitable for a particular fluid, with respect to its influence on entropy generation.

2013 ◽  
Vol 561 ◽  
pp. 460-465
Author(s):  
Dong Hui Zhang ◽  
Jiao Gao

The objective of this paper is to study the characteristic of a circular tube with a built-in arc belt on fluid flow and heat transfer in uniform wall temperature flows. Numerical simulations for hydrodynamically laminar flow was direct ran at Re between 600 and 1800. Preliminary results on velocity and temperature statistics for uniform wall temperature show that, arc belt can swirl the pipe fluid, so that the fluid at the center of the tube and the fluid of the boundary layer of the wall can mix fully, and plays the role of enhanced heat transfer, but also significantly increases the resistance of the fluid and makes the resistance coefficient of the enhanced tube greater than smooth tube. The combination property PEC is all above 1.5.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mohammad Shanbghazani ◽  
Vahid Heidarpoor ◽  
Marc A. Rosen ◽  
Iraj Mirzaee

The entropy generation is investigated numerically in axisymmetric, steady-state, and incompressible laminar flow in a rotating single free disk. The finite-volume method is used for solving the momentum and energy equations needed for the determination of the entropy generation due to heat transfer and fluid friction. The numerical model is validated by comparing it to previously reported analytical and experimental data for momentum and energy. Results are presented in terms of velocity distribution, temperature, local entropy generation rate, Bejan number, and irreversibility ratio distribution for various rotational Reynolds number and physical cases, using dimensionless parameters. It is demonstrated that increasing rotational Reynolds number increases the local entropy generation rate and irreversibility rate, and that the irreversibility is mainly due to heat transfer while the irreversibility associated with fluid friction is minor.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950060
Author(s):  
Ashwini Hiremath ◽  
G. Janardhana Reddy ◽  
Mahesh Kumar ◽  
O. Anwar Bég

The current study investigates theoretically and numerically the entropy generation in time-dependent free-convective third-grade viscoelastic fluid convection flow from a vertical plate. The nondimensional conservation equations for mass, momentum and energy are solved using a Crank–Nicolson finite difference method with suitable boundary conditions. Expressions for known values of flow-variables coefficients are also derived for the wall heat transfer and skin friction and numerically evaluated. The effect of Grashof number, Prandtl number, group parameter (product of dimensionless temperature difference and Brinkman number) and third-grade parameter on entropy heat generation is analyzed and shown graphically. Bejan line distributions are also presented for the influence of several control parameters. The computations reveal that with increasing third-grade parameter, the entropy generation decreases and Bejan number increases. Also, the comparison graph shows that contour lines for third-grade fluid vary considerably from the Newtonian fluid. The study is relevant to non-Newtonian thermal materials processing systems.


Author(s):  
Ali Belhocine ◽  
Nadica Stojanovic ◽  
Oday Ibraheem Abdullah

In this paper, steady laminar boundary layer flow of a Newtonian fluid over a flat plate in a uniform free stream was investigated numerically when the surface plate is heated by forced convection from the hot fluid. This flow is a good model of many situations involving flow over fins that are relatively widely spaced. All the solutions given here were with constant fluid properties and negligible viscous dissipation for two-dimensional, steady, incompressible laminar flow with zero pressure gradient. The similarity solution has shown its efficiency here to transform the governing equations of the thermal boundary layer into a nonlinear, third-order ordinary differential equation and solved numerically by using 4th-order Runge-Kutta method which in turn was programmed in FORTRAN language. The dimensionless temperature, velocity, and all boundary layer functions profiles were obtained and plotted in figures for different parameters entering into the problem. Several results of best approximations and expressions of important correlations relating to heat transfer rates were drawn in this study of which Prandtl’s number to the plate for physical interest was also discussed across the tables. The same case of solution procedure was made for a plane plate subjected to other thermal boundary conditions in a laminar flow. Finally, for the validation of the treated numerical model, the results obtained are in good agreement with those of the specialized literature, and comparison with available results in certain cases is excellent.


Sign in / Sign up

Export Citation Format

Share Document