flow heat
Recently Published Documents


TOTAL DOCUMENTS

1479
(FIVE YEARS 256)

H-INDEX

55
(FIVE YEARS 7)

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 433
Author(s):  
Bahareh Ramezani ◽  
António Tadeu ◽  
Tiago Jesus ◽  
Michael Brett ◽  
Joel Mendes

Climatic chambers are highly important in research and industrial applications and are used to examine manufactured samples, specimens, or components in controlled environment conditions. Despite the growing industrial demand for climatic chambers, only a few published studies have specifically concentrated on performance analysis and functional improvements through numerical and experimental studies. In this study, a 3D computational fluid dynamics (CFD) model of a climatic chamber was developed using Ansys Fluent to simulate the fluid flow, heat, and mass transfer to obtain the velocity, temperature, and relative humidity fields in the interior box of a 1200 L climatic chamber. The results were then validated with experimental data from a prototype. Finally, the heat losses of the surrounding components of the chamber were calculated, and the relationship between the inside temperature and the overall thermal loss was modelled. This validated numerical model provides the possibility of optimising the performance of climate chambers by reducing the thermal loss from the walls and modifying the air flow pattern inside the chamber.


2021 ◽  
Vol 47 (6) ◽  
pp. 191-199
Author(s):  
Shoma Fujii ◽  
Taiga Miyagawa ◽  
Takao Nakagaki ◽  
Yuichiro Kanematsu ◽  
Yasunori Kikuchi ◽  
...  

2021 ◽  
Author(s):  
◽  
Om Prakash Pandey

<p>In this regional heat flow study of New Zealand temperatures have been measured in available boreholes using a specially constructed thermistor probe, and existing temperature information has been incorporated from various sources including oil prospecting boreholes. Thermal conductivity has been measured in the laboratory on 581 samples. Newly determined values of heat flow are given for 105 locations; values for the South Island are here presented for the first time. Most of the heat flow values have been grouped in eight regions based on the level of heat flow. This classification can be related to the occurrence of certain surface manifestations and geophysical anomalies, and to regional plate tectonics. High heat flow in three regions is consistent with melting conditions being reached at depths between 35km and 45km. These are the Taranaki Region, the West Coast Region and the Great South Basin. The average regional heat flow for these regions varies from 86.4 mW/m2 to 110.7 mW/m2. Much lower heat flow is obtained in the Hikurangi and Marlborough-Canterbury Regions; these may possibly be interconnected. Elsewhere the heat flow is low to normal with isolated highs. The broad distribution of heat flow in the North Island is typical for an active subduction region. Radioactive heat generation has been measured on rock types from various localities, and large variations have been found. The heat flow - heat generation relationship has been studied for 42 sites. A linear relationship is found only in the Taranaki and Hikurangi Regions. Temperature calculations show large differences in the deep-seated temperature distribution beneath New Zealand, and this has also been reflected in the distribution of "reduced heat flow". Temperature and heat flow can be correlated with upper mantle inhomogeneity. The inferred variation of radioactive heat generation with depth has been studied for areas beneath the Western Canterbury Region. A mean heat generation of 1.56 plus-minus .07 muW/m3 has been found in a sequence which has been inferred to occur between 17km and 30km in depth under the region; this is very much higher than the usually adopted values for the lower crust. Normal heat flow observed in the Western Cook Strait Region, and the existence of good seismic wave transmission beneath the same region, can be attributed to crustal and lithospheric thickening. The relevance of present study to petroleum occurrences has been examined and it is found that in areas of proven hydrocarbon potential the heat flow is high.</p>


2021 ◽  
Author(s):  
◽  
Om Prakash Pandey

<p>In this regional heat flow study of New Zealand temperatures have been measured in available boreholes using a specially constructed thermistor probe, and existing temperature information has been incorporated from various sources including oil prospecting boreholes. Thermal conductivity has been measured in the laboratory on 581 samples. Newly determined values of heat flow are given for 105 locations; values for the South Island are here presented for the first time. Most of the heat flow values have been grouped in eight regions based on the level of heat flow. This classification can be related to the occurrence of certain surface manifestations and geophysical anomalies, and to regional plate tectonics. High heat flow in three regions is consistent with melting conditions being reached at depths between 35km and 45km. These are the Taranaki Region, the West Coast Region and the Great South Basin. The average regional heat flow for these regions varies from 86.4 mW/m2 to 110.7 mW/m2. Much lower heat flow is obtained in the Hikurangi and Marlborough-Canterbury Regions; these may possibly be interconnected. Elsewhere the heat flow is low to normal with isolated highs. The broad distribution of heat flow in the North Island is typical for an active subduction region. Radioactive heat generation has been measured on rock types from various localities, and large variations have been found. The heat flow - heat generation relationship has been studied for 42 sites. A linear relationship is found only in the Taranaki and Hikurangi Regions. Temperature calculations show large differences in the deep-seated temperature distribution beneath New Zealand, and this has also been reflected in the distribution of "reduced heat flow". Temperature and heat flow can be correlated with upper mantle inhomogeneity. The inferred variation of radioactive heat generation with depth has been studied for areas beneath the Western Canterbury Region. A mean heat generation of 1.56 plus-minus .07 muW/m3 has been found in a sequence which has been inferred to occur between 17km and 30km in depth under the region; this is very much higher than the usually adopted values for the lower crust. Normal heat flow observed in the Western Cook Strait Region, and the existence of good seismic wave transmission beneath the same region, can be attributed to crustal and lithospheric thickening. The relevance of present study to petroleum occurrences has been examined and it is found that in areas of proven hydrocarbon potential the heat flow is high.</p>


Sign in / Sign up

Export Citation Format

Share Document