isothermal fluid
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110333
Author(s):  
Aamir Khan ◽  
Rehan Ali Shah ◽  
M Kamran Alam ◽  
Sajid Rehman ◽  
M Shahzad ◽  
...  

The goal of this research is to investigate the behaviours of porosity and squeezing phenomena in the presence of time-dependent heat flow that affect the flow rate and improve the system’s heating/cooling mechanism, reduce non-Newtonian fluid turbulence and scale-up flow tracers. Squeezing discs in the presence of no-slip velocity and convective surface boundary conditions induces a laminar, unstable and incompressible non-Newtonian fluid. The convective form of the momentum, concentration and energy equations are modelled for smooth discs to evaluate and offer an analytical and numerical examination of the flow for heat and mass transfer, which are further transformed to a highly non-linear system of ordinary differential equation using similarity transformations. In the case of smooth disks, the self-similar equations are solved using Homotopy Analysis Method (HAM) with appropriate initial guesses and auxiliary parameters to produce an algorithm with an accelerated and assured convergence. The comparison of HAM solutions with numerical solver programme BVP4 c proves the validity and correctness of HAM results. It is found that increasing or bypassing the Hartman number reduces the capillary region, making the Lorentz force effect more visible for small values of non-Newtonian parameter. The concentration rate at the bottom disc rises rapidly as the thermal diffusivity rises. In addition, because the rate of outflow from the flow domain increases, the suction/injection parameter lowers the radial velocity. Additionally, as the non-Newtonian parameter is increased, skin friction and heat/mass flux rise. In the suction/injection situation, all physical characteristics have the opposite effect on flow field profiles.


2021 ◽  
pp. 104570
Author(s):  
Aamir Khan ◽  
Rehan A. Shah ◽  
M. Kamran Alam ◽  
Hijaz Ahmed ◽  
M. Shahzad ◽  
...  

2021 ◽  
Author(s):  
Kieu Hiep Le

To preserve the product quality as well as to reduce the logistics and storage cost, drying process is widely applied in the processing of porous material. In consideration of transport phenomena that involve a porous medium during drying, the complex morphology of the medium, and its influences on the distribution, flow, displacement of multiphase fluids are encountered. In this chapter, the recent advanced mass and energy transport models of drying processes are summarized. These models which were developed based on both pore- and continuum-scales, may provide a better fundamental understanding of non-isothermal liquid–vapor transport at both the continuum scale and the pore scale, and to pave the way for designing, operating, and optimizing drying and relevant industrial processes.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Stefan Finsterle ◽  
Cal Cooper ◽  
Richard A. Muller ◽  
John Grimsich ◽  
John Apps

The depth and layout of a horizontal borehole repository has the potential to offer strong isolation of nuclear waste from the surface. However, the isolation may be compromised by the borehole used to access the repository, as it could provide a direct fast-flow path transporting radionuclides from the disposal section to the accessible environment. Thus, backfilling the disposal section and sealing the access hole are considered essential engineered safety components. To analyze the importance of plugging the open space between canisters and sealing the access hole, we numerically calculate non-isothermal fluid flow and radionuclide transport through the borehole and the surrounding geosphere for a variety of scenarios, which include backfill materials with different sealing properties and configurations that potentially induce strong driving forces along both the horizontal and vertical sections of the borehole. The simulations indicate that the dose contribution of radionuclides released through the access hole is small, even if the backfill material is of poor quality or has deteriorated, and even if considerable horizontal and vertical pressure gradients are imposed by assuming the underlying formation is overpressured and that the disposal section is intersected by faults activated during a seismic event. The modeling also reveals that the low influence of backfill integrity on repository performance partly arises from the very high length-to-diameter ratio of the borehole, which favors the radial diffusion of radionuclides—as well as pressure dissipation and associated advective transport—into the surrounding formation rather than axial transport along the borehole. The integrated modeling approach also exposes the importance of accounting for the connections and feedback mechanisms among the various subcomponents of the repository system.


Sign in / Sign up

Export Citation Format

Share Document