scholarly journals Using Homo-Separation of Variables for Solving Systems of Nonlinear Fractional Partial Differential Equations

Author(s):  
Abdolamir Karbalaie ◽  
Hamed Hamid Muhammed ◽  
Bjorn-Erik Erlandsson

A new method proposed and coined by the authors as the homo-separation of variables method is utilized to solve systems of linear and nonlinear fractional partial differential equations (FPDEs). The new method is a combination of two well-established mathematical methods, namely, the homotopy perturbation method (HPM) and the separation of variables method. When compared to existing analytical and numerical methods, the method resulting from our approach shows that it is capable of simplifying the target problem at hand and reducing the computational load that is required to solve it, considerably. The efficiency and usefulness of this new general-purpose method is verified by several examples, where different systems of linear and nonlinear FPDEs are solved.

2021 ◽  
Vol 20 ◽  
pp. 504-507
Author(s):  
Alsauodi Maha ◽  
Alhorani Mohammed ◽  
Khalil Roshdi

In this paper we find certain solutions of some fractional partial differential equations. Tensor product of Banach spaces is used where separation of variables does not work.


2021 ◽  
Vol 26 (3) ◽  
pp. 163-176
Author(s):  
M. Paliivets ◽  
E. Andreev ◽  
A. Bakshtanin ◽  
D. Benin ◽  
V. Snezhko

Abstract This paper presents the results of applying a new iterative method to linear and nonlinear fractional partial differential equations in fluid mechanics. A numerical analysis was performed to find an exact solution of the fractional wave equation and fractional Burgers’ equation, as well as an approximate solution of fractional KdV equation and fractional Boussinesq equation. Fractional derivatives of the order α are described using Caputo's definition with 0 < α ≤ 1 or 1 < α ≤ 2. A comparative analysis of the results obtained using a new iterative method with those obtained by the Adomian decomposition method showed the first method to be more efficient and simple, providing accurate results in fewer computational operations. Given its flexibility and ability to solve nonlinear equations, the iterative method can be used to solve more complex linear and nonlinear fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document