International Journal of Applied Mechanics and Engineering
Latest Publications


TOTAL DOCUMENTS

326
(FIVE YEARS 180)

H-INDEX

6
(FIVE YEARS 3)

Published By Walter De Gruyter Gmbh

2353-9003

2021 ◽  
Vol 26 (4) ◽  
pp. 29-50
Author(s):  
Mohammad Sanjeed Hasan ◽  
Md. Tusher Mollah ◽  
Dipankar Kumar ◽  
Rabindra Nath Mondal ◽  
Giulio Lorenzini

Abstract The fluid flow and heat transfer through a rotating curved duct has received much attention in recent years because of vast applications in mechanical devices. It is noticed that there occur two different types of rotations in a rotating curved duct such as positive and negative rotation. The positive rotation through the curved duct is widely investigated while the investigation on the negative rotation is rarely available. The paper investigates the influence of negative rotation for a wide range of Taylor number (−10 ≤ Tr ≤ −2500) when the duct itself rotates about the center of curvature. Due to the rotation, three types of forces including Coriolis, centrifugal, and buoyancy forces are generated. The study focuses and explains the combined effect of these forces on the fluid flow in details. First, the linear stability of the steady solution is performed. An unsteady solution is then obtained by time-evolution calculation and flow transition is determined by calculating phase space and power spectrum. When Tr is raised in the negative direction, the flow behavior shows different flow instabilities including steady-state, periodic, multi-periodic, and chaotic oscillations. Furthermore, the pattern variations of axial and secondary flow velocity and isotherms are obtained, and it is found that there is a strong interaction between the flow velocities and the isotherms. Then temperature gradients are calculated which show that the fluid mixing and the acts of secondary flow have a strong influence on heat transfer in the fluid. Diagrams of unsteady flow and vortex structure are further sketched and precisely elucidate the curvature effects on unsteady fluid flow. Finally, a comparison between the numerical and experimental data is discussed which demonstrates that both data coincide with each other.


2021 ◽  
Vol 26 (4) ◽  
pp. 113-127
Author(s):  
T.F. Lihonou ◽  
A.V. Monwanou ◽  
C.H. Miwadinou ◽  
J.B. Chabi Orou

Abstract This work is devoted to the analysis of the linear temporal stability of a laminar dynamic boundary layer on a horizontal porous plane plate. The basic flow is assumed to be laminar and two-dimensional. The basic flow velocity profiles are obtained by numerically solving the Blasius equation using the Runge-Kutta method. The perturbations of these basic solutions are expressed in the form of three-dimensional Tollmien-Schlichting waves. The formulation of the stability problem leads to the Orr-Sommerfeld equation modified by the permeability parameter (Darcy number) and the small Reynolds number. This equation is given in a general form which can be applied to the Chebyshev domain and the boundary layer domain and solved numerically using the Chebyshev spectral collocation method. The marginal stability diagrams, the critical Reynolds numbers and the eigenvalue spectra are obtained for different values of the parameters which have modified the stability equation. Numerical solutions indicate the importance of the effect of these parameters on the flow stability characteristics.


2021 ◽  
Vol 26 (4) ◽  
pp. 51-62
Author(s):  
Muhammed Abbas Husain ◽  
Zahraa Hameed Hasan

Abstract This paper presents an update of the slope-deflection method, which is used in the analysis of statically indeterminate structures. In this study, new reduced equations are presented based on including both the effects of the member rotations and the fixed end moments in one term, rather than two terms, in order to simplify the application of the slope-deflection method. The reduced equations are developed, then three numerical examples with comprehensive cases of beams are solved by applying both the original and the proposed reduced equations. The analysis outputs indicated that the reduced equations are applicable for all cases that can be analyzed by the slope-deflection method, and give identical results compared with the original equations. It is found that the reduced equations require less computations when the structure has no support settlement, compared with the original equations, whereas the computations are approximately similar when the structure has a support settlement.


2021 ◽  
Vol 26 (4) ◽  
pp. 77-98
Author(s):  
K.M. Joseph ◽  
E. Ayankop-Andi ◽  
S.U. Mohammed

Abstract This study investigates the unsteady MHD flow of a fourth-grade fluid in a horizontal parallel plates channel. The upper plate is oscillating and moving while the bottom plate is stationary. Solutions for momentum, energy and concentration equations are obtained by the He-Laplace scheme. This method was also used by Idowu and Sani [12] and there is agreement with our results. The effect of various flow parameters controlling the physical situation is discussed with the aid of graphs. Significant results from this study show that velocity and temperature fields increase with the increase in the thermal radiation parameter, while velocity and concentric fields decrease with an increase in the chemical reaction parameter. Furthermore, velocity, temperature and concentric fields decrease with an increase in the suction parameter. It is also interesting to note that when S4 = 0, our results will be in complete agreement with Idowu and Sani [12] results. The results of this work are applicable to industrial processes such as polymer extrusion of dye, draining of plastic films etc.


2021 ◽  
Vol 26 (4) ◽  
pp. 63-76
Author(s):  
M.D. Nurul Izyan ◽  
Nur Ain Ayunni Sabri ◽  
A.K. Nor Hafizah ◽  
D.S. Sankar ◽  
K.K. Viswanathan

Abstract The aim of the study is to analyse the axisymmetric free vibration of layered cylindrical shells filled with a quiescent fluid. The fluid is assumed to be incompressible and inviscid. The equations of axisymmetric vibrations of layered cylindrical shell filled with fluid, on the longitudinal and transverse displacement components are obtained using Love’s first approximation theory. The solutions of displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by Bickley-type splines. A generalized eigenvalue problem is obtained and solved numerically for a frequency parameter and an associated eigenvector of spline coefficients. Two layered shells with three different types of materials under clamped-clamped boundary conditions are considered. Parametric studies are made on the variation of the frequency parameter with respect to length-to-radius ratio and length-to-thickness ratio.


2021 ◽  
Vol 26 (4) ◽  
pp. 145-155
Author(s):  
Krzysztof Łukaszewski ◽  
Tatiana Buchwald ◽  
Radosław Wichniarek

Abstract The aim of this research was to determine the possibility of applying alternative techniques for the production of prototypes for spare parts in agriculture and to determine the possible directions of development of their applications in the engineering industry. Then, to determine which spare parts could be produced using the FDM technique, comparisons of the most important parameters of spare parts produced independently (using the FDM technique) and obtained from producers (produced using traditional methods in professional factories) were made. A number of factors were analysed, from technical parameters such as machine type, processed material and its consumption including required as support structures, to economic issues such as manufacturing or purchase delivery total time and cost. The FDM technique has proven itself in many ways in the production of spare parts for agricultural machinery.


2021 ◽  
Vol 26 (4) ◽  
pp. 17-28
Author(s):  
V.T. Dmytriv ◽  
O.S. Lanets ◽  
І.V. Dmytriv ◽  
І.М. Horodetskyy

Abstract In the article, the analytical dependences of modelling the cell cross-sectional area between two adjacent blades of a rotary blade pump and capacity for a pump with fixed and rotating stators are given, and analytical dependences are derived to model the power necessary to overcome the friction forces of the blades. The forces acting on the radially placed blade of a rotary pump with a fixed stator (non-rotating or stationary) and a rotating stator are analyzed. Design and technological parameters that influence the pump capacity and power are taken into account. The power required for the movement of the pump blade without taking into account the compression of the air has the opposite character of the change as to the pump capacity The capacity of a rotary pump with a rotating stator is three times higher than that of a stationary stator. The rotary pump with a rotating stator, with six radially spaced blades, consumes 0.854 [kW] less power to overcome the blade friction of 1 313 [kW]. The results of modelling of the pump work are given.


2021 ◽  
Vol 26 (4) ◽  
pp. 179-191
Author(s):  
R. Parthiban ◽  
G. Palani

Abstract The current study aims to explore stagnation spot flow of a micropolar fluid about a plain linear exponentially expanding penetrable surface in the incidence of radiation and in-house heat production/immersion. Through similarity mapping, the mathematical modeling statements are transformed to ODE’s and numerical results are found by shooting techniques. The impact of varying physical constants on momentum, micro-rotation and temperature is demonstrated through graphs. The computed measures including shear, couple stress, mass transfer and the local surface heat flux with distinct measures of factors involved in this proposed problem are presented through a table.


2021 ◽  
Vol 26 (4) ◽  
pp. 99-112
Author(s):  
Sachin Kaushal ◽  
Rajneesh Kumar ◽  
Kulwinder Parmar

Abstract The aim of the present paper is to study the impact of diffusion and impedance parameters on the propagation of plane waves in a thermoelastic medium for Green and Lindsay theory (G-L) and the Coupled theory (C-T) of thermoelasticity. Results are demonstrated for impedance boundary conditions and the amplitude ratios of various reflected waves against the angle of incidence are calculated numerically. The characteristics of diffusion, relaxation time and impedence parameter on amplitude ratios have been depicted graphically. Some cases of interest are also derived from the present investigation.


2021 ◽  
Vol 26 (4) ◽  
pp. 156-166
Author(s):  
Amir Mahboob ◽  
Amir Reza Eskenati ◽  
Soheil Moradalizadeh

Abstract Fiber-reinforced polymer (FRP) has been commonly used to reinforce concrete structures. The kinds of FRP demonstrate an effective alternative to various methods of reinforcement in concrete structures subjected to bad environmental conditions which cause corrosion and damage to concrete. Due to their lightweight, high strength, and high corrosion and fatigue resistance, Fiber Reinforced Polymer (FRP) composites have been widely applied in steel substitution during revitalization interventions. This paper presents numerical three-points bending tests on different models to investigate the effect of the reinforcements; Carbon, Glass, and Aramid fibers to find the corresponding cost of each one. Also, there is an available experimental model for verifying the results of the FEM that demonstrated broad agreement with the experimental statement, concerning the load-displacement curve. After validating the models, alternative designs such as type of the FRP, position of the FRP, and amount of the FRP usage were numerically tested to study the influence of each on the load-bearing capacity. The results showed that the best configuration would be one with GFRP and the load-bearing capacity is around 9 kN in the optimum design.


Sign in / Sign up

Export Citation Format

Share Document