scholarly journals A Conjugate Gradient Method with Global Convergence for Large-Scale Unconstrained Optimization Problems

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Xiwen Lu ◽  
Zengxin Wei

The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. This paper proposes a conjugate gradient method which is similar to Dai-Liao conjugate gradient method (Dai and Liao, 2001) but has stronger convergence properties. The given method possesses the sufficient descent condition, and is globally convergent under strong Wolfe-Powell (SWP) line search for general function. Our numerical results show that the proposed method is very efficient for the test problems.

Author(s):  
Chergui Ahmed ◽  
Bouali Tahar

<span>The conjugate gradient method has played a special role in   solving large-scale unconstrained Optimization problems. In this paper, we propose a new family of CG coefficients that   possess    sufficient descent conditions and global convergence properties this CG method is similar to (Wei et al) [7].  Global convergence   result is established under Strong Wolf-Powell line search. Numerical results to find  the  optimum solution of some test  functions show the   new proposed formula has the best result in CPU time and the number of iterations, and the number of gradient evaluations when it comparing with FR, PRP, DY, and WYL </span>


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuting Chen ◽  
Mingyuan Cao ◽  
Yueting Yang

AbstractIn this paper, we present a new conjugate gradient method using an acceleration scheme for solving large-scale unconstrained optimization. The generated search direction satisfies both the sufficient descent condition and the Dai–Liao conjugacy condition independent of line search. Moreover, the value of the parameter contains more useful information without adding more computational cost and storage requirements, which can improve the numerical performance. Under proper assumptions, the global convergence result of the proposed method with a Wolfe line search is established. Numerical experiments show that the given method is competitive for unconstrained optimization problems, with a maximum dimension of 100,000.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Min Sun ◽  
Jing Liu

Recently, Zhang et al. proposed a sufficient descent Polak-Ribière-Polyak (SDPRP) conjugate gradient method for large-scale unconstrained optimization problems and proved its global convergence in the sense thatlim infk→∞∥∇f(xk)∥=0when an Armijo-type line search is used. In this paper, motivated by the line searches proposed by Shi et al. and Zhang et al., we propose two new Armijo-type line searches and show that the SDPRP method has strong convergence in the sense thatlimk→∞∥∇f(xk)∥=0under the two new line searches. Numerical results are reported to show the efficiency of the SDPRP with the new Armijo-type line searches in practical computation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Xiwen Lu ◽  
Bin Qin

The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001). Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.


2011 ◽  
Vol 18 (9) ◽  
pp. 1249-1253 ◽  
Author(s):  
Mehdi Dehghan ◽  
Masoud Hajarian

The conjugate gradient method is one of the most useful and the earliest-discovered techniques for solving large-scale nonlinear optimization problems. Many variants of this method have been proposed, and some are widely used in practice. In this article, we study the descent Dai–Yuan conjugate gradient method which guarantees the sufficient descent condition for any line search. With exact line search, the introduced conjugate gradient method reduces to the Dai–Yuan conjugate gradient method. Finally, a global convergence result is established when the line search fulfils the Goldstein conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jinkui Liu ◽  
Youyi Jiang

A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent conditiongkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995) in contrast to the famous CD method, FR method, and PRP method.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 227
Author(s):  
Zabidin Salleh ◽  
Ghaliah Alhamzi ◽  
Ibitsam Masmali ◽  
Ahmad Alhawarat

The conjugate gradient method is one of the most popular methods to solve large-scale unconstrained optimization problems since it does not require the second derivative, such as Newton’s method or approximations. Moreover, the conjugate gradient method can be applied in many fields such as neural networks, image restoration, etc. Many complicated methods are proposed to solve these optimization functions in two or three terms. In this paper, we propose a simple, easy, efficient, and robust conjugate gradient method. The new method is constructed based on the Liu and Storey method to overcome the convergence problem and descent property. The new modified method satisfies the convergence properties and the sufficient descent condition under some assumptions. The numerical results show that the new method outperforms famous CG methods such as CG-Descent5.3, Liu and Storey, and Dai and Liao. The numerical results include the number of iterations and CPU time.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Bin Qin

The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL and WYL conjugate gradient methods. The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 92
Author(s):  
Talat Alkouli ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Puspa Liza Ghazali

In this paper, an efficient modification of nonlinear conjugate gradient method and an associated implementation, based on an exact line search, are proposed and analyzed to solve large-scale unconstrained optimization problems. The method satisfies the sufficient descent property. Furthermore, global convergence result is proved. Computational results for a set of unconstrained optimization test problems, some of them from CUTE library, showed that this new conjugate gradient algorithm seems to converge more stable and outperforms the other similar methods in many situations.   


2018 ◽  
Vol 13 (03) ◽  
pp. 2050059
Author(s):  
Amina Boumediene ◽  
Rachid Benzine ◽  
Mohammed Belloufi

Nonlinear conjugate gradient (CG) methods are widely used for solving large scale unconstrained optimization problems. Many studies have been devoted to develop and improve these methods. In this paper, we aim to study the global convergence of the BBB conjugate gradient method with exact line search.


Sign in / Sign up

Export Citation Format

Share Document