scholarly journals Optimal Dividend and Capital Injection Strategies for a Risk Model under Force of Interest

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ying Fang ◽  
Zhongfeng Qu

As a generalization of the classical Cramér-Lundberg risk model, we consider a risk model including a constant force of interest in the present paper. Most optimal dividend strategies which only consider the processes modeling the surplus of a risk business are absorbed at 0. However, in many cases, negative surplus does not necessarily mean that the business has to stop. Therefore, we assume that negative surplus is not allowed and the beneficiary of the dividends is required to inject capital into the insurance company to ensure that its risk process stays nonnegative. For this risk model, we show that the optimal dividend strategy which maximizes the discounted dividend payments minus the penalized discounted capital injections is a threshold strategy for the case of the dividend payout rate which is bounded by some positive constant and the optimal injection strategy is to inject capitals immediately to make the company's assets back to zero when the surplus of the company becomes negative.

2007 ◽  
Vol 37 (02) ◽  
pp. 203-233 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Jürgen Hartinger ◽  
Stefan Thonhauser

For the classical Cramér-Lundberg risk model, a dividend strategy of threshold type has recently been suggested in the literature. This strategy consists of paying out part of the premium income as dividends to shareholders whenever the free surplus is above a given threshold level. In contrast to the well-known horizontal barrier strategy, the threshold strategy can lead to a positive infinite-horizon survival probability, with reduced profit in terms of dividend payments. In this paper we extend several of these results to a Sparre Andersen model with generalized Erlang(n)-distributed interclaim times. Furthermore, we compare the performance of the threshold strategy to a linear dividend barrier model. In particular, (partial) integro-differential equations for the corresponding ruin probabilities and expected discounted dividend payments are provided for both models and explicitly solved for n = 2 and exponentially distributed claim amounts. Finally, the explicit solutions are used to identify parameter sets for which one strategy outperforms the other and vice versa.


2014 ◽  
Vol 44 (3) ◽  
pp. 635-651 ◽  
Author(s):  
Chuancun Yin ◽  
Yuzhen Wen ◽  
Yongxia Zhao

AbstractIn this paper we study the optimal dividend problem for a company whose surplus process evolves as a spectrally positive Lévy process before dividends are deducted. This model includes the dual model of the classical risk model and the dual model with diffusion as special cases. We assume that dividends are paid to the shareholders according to an admissible strategy whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. We show that the optimal dividend strategy is formed by a threshold strategy.


2018 ◽  
Vol 55 (4) ◽  
pp. 1272-1286 ◽  
Author(s):  
Kei Noba ◽  
José-Luis Pérez ◽  
Kazutoshi Yamazaki ◽  
Kouji Yano

Abstract De Finetti’s optimal dividend problem has recently been extended to the case when dividend payments can be made only at Poisson arrival times. In this paper we consider the version with bail-outs where the surplus must be nonnegative uniformly in time. For a general spectrally negative Lévy model, we show the optimality of a Parisian-classical reflection strategy that pays the excess above a given barrier at each Poisson arrival time and also reflects from below at 0 in the classical sense.


2007 ◽  
Vol 37 (2) ◽  
pp. 203-233 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Jürgen Hartinger ◽  
Stefan Thonhauser

For the classical Cramér-Lundberg risk model, a dividend strategy of threshold type has recently been suggested in the literature. This strategy consists of paying out part of the premium income as dividends to shareholders whenever the free surplus is above a given threshold level. In contrast to the well-known horizontal barrier strategy, the threshold strategy can lead to a positive infinite-horizon survival probability, with reduced profit in terms of dividend payments. In this paper we extend several of these results to a Sparre Andersen model with generalized Erlang(n)-distributed interclaim times. Furthermore, we compare the performance of the threshold strategy to a linear dividend barrier model. In particular, (partial) integro-differential equations for the corresponding ruin probabilities and expected discounted dividend payments are provided for both models and explicitly solved for n = 2 and exponentially distributed claim amounts. Finally, the explicit solutions are used to identify parameter sets for which one strategy outperforms the other and vice versa.


2011 ◽  
Vol 48 (A) ◽  
pp. 29-38 ◽  
Author(s):  
Onno J. Boxma ◽  
Andreas Löpker ◽  
David Perry

We consider a risk model with threshold strategy, where the insurance company pays off a certain percentage of the income as dividend whenever the current surplus is larger than a given threshold. We investigate the ruin time, ruin probability, and the total dividend, using methods and results from queueing theory.


2008 ◽  
Vol 38 (1) ◽  
pp. 183-206 ◽  
Author(s):  
Esther Frostig

Assume that an insurance company pays dividends to its shareholders whenever the surplus process is above a given threshold. In this paper we study the expected amount of dividends paid, and the expected time to ruin in the compound Poisson risk process perturbed by a Brownian motion. Two models are considered: In the first one the insurance company pays whatever amount exceeds a given level b as dividends to its shareholders. In the second model, the company starts to pay dividends at a given rate, smaller than the premium rate, whenever the surplus up-crosses the level b. The dividends are paid until the surplus down-crosses the level a, a < b . We assume that the claim sizes are phase-type distributed. In the analysis we apply the multidimensional Wald martingale, and the multidimensional Asmussesn and Kella martingale.


Sign in / Sign up

Export Citation Format

Share Document