the classical risk model
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Vol 13 (12) ◽  
pp. 298
Author(s):  
Yuan Gao ◽  
Lingju Chen ◽  
Jiancheng Jiang ◽  
Honglong You

In this paper we study estimating ruin probability which is an important problem in insurance. Our work is developed upon the existing nonparametric estimation method for the ruin probability in the classical risk model, which employs the Fourier transform but requires smoothing on the density of the sizes of claims. We propose a nonparametric estimation approach which does not involve smoothing and thus is free of the bandwidth choice. Compared with the Fourier-transformation-based estimators, our estimators have simpler forms and thus are easier to calculate. We establish asymptotic distributions of our estimators, which allows us to consistently estimate the asymptotic variances of our estimators with the plug-in principle and enables interval estimates of the ruin probability.



Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 511 ◽  
Author(s):  
Wenguang Yu ◽  
Peng Guo ◽  
Qi Wang ◽  
Guofeng Guan ◽  
Qing Yang ◽  
...  

In this paper, we assume that the reserve level of an insurance company can only be observed at discrete time points, then a new risk model is proposed by introducing a periodic capital injection strategy and a barrier dividend strategy into the classical risk model. We derive the equations and the boundary conditions satisfied by the Gerber-Shiu function, the expected discounted capital injection function and the expected discounted dividend function by assuming that the observation interval and claim amount are exponentially distributed, respectively. Numerical examples are also given to further analyze the influence of relevant parameters on the actuarial function of the risk model.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hua Dong ◽  
Xianghua Zhao

A periodic dividend problem is studied in this paper. We assume that dividend payments are made at a sequence of Poisson arrival times, and ruin is continuously monitored. First of all, three integro-differential equations for the expected discounted dividends are obtained. Then, we investigate the explicit expressions for the expected discounted dividends, and the optimal dividend barrier is given for exponential claims. A similar study on a generalized Gerber–Shiu function involving the absolute time is also performed. To demonstrate the existing results, we give some numerical examples.



2020 ◽  
Vol 91 ◽  
pp. 202-208 ◽  
Author(s):  
Romain Gauchon ◽  
Stéphane Loisel ◽  
Jean-Louis Rullière ◽  
Julien Trufin


Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Mohamed Lkabous ◽  
Jean-François Renaud

In this short paper, we study a VaR-type risk measure introduced by Guérin and Renaud and which is based on cumulative Parisian ruin. We derive some properties of this risk measure and we compare it to the risk measures of Trufin et al. and Loisel and Trufin.









Sign in / Sign up

Export Citation Format

Share Document