scholarly journals An Investigation into the Performance of Particle Swarm Optimization with Various Chaotic Maps

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Akugbe Martins Arasomwan ◽  
Aderemi Oluyinka Adewumi

This paper experimentally investigates the effect of nine chaotic maps on the performance of two Particle Swarm Optimization (PSO) variants, namely, Random Inertia Weight PSO (RIW-PSO) and Linear Decreasing Inertia Weight PSO (LDIW-PSO) algorithms. The applications of logistic chaotic map by researchers to these variants have led to Chaotic Random Inertia Weight PSO (CRIW-PSO) and Chaotic Linear Decreasing Inertia Weight PSO (CDIW-PSO) with improved optimizing capability due to better global search mobility. However, there are many other chaotic maps in literature which could perhaps enhance the performances of RIW-PSO and LDIW-PSO more than logistic map. Some benchmark mathematical problems well-studied in literature were used to verify the performances of RIW-PSO and LDIW-PSO variants using the nine chaotic maps in comparison with logistic chaotic map. Results show that the performances of these two variants were improved more by many of the chaotic maps than by logistic map in many of the test problems. The best performance, in terms of function evaluations, was obtained by the two variants using Intermittency chaotic map. Results in this paper provide a platform for informative decision making when selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO and RIW-PSO.

2012 ◽  
Vol 605-607 ◽  
pp. 2217-2221
Author(s):  
Rong Hua ◽  
Dan Jiang Chen ◽  
Yin Zhong Ye

Chaos particle swarm optimization (CPSO) can not guarantee the population multiplicity and the optimized ergodicity, because its algorithm parameters are still random numbers in form. This paper proposes a new adaptive chaos embedded particle swarm optimization (ACEPSO) algorithm that uses chaotic maps to substitute random numbers of the classical PSO algorithm so as to make use of the properties of stochastic and ergodicity in chaotic search and introduces an adaptive inertia weight factor for each particle to adjust its inertia weight factor adaptively in response to its fitness, which can overcome the drawbacks of CPSO algorithm that is easily trapped in local optima. The experiments with complex and Multi-dimensional functions demonstrate that ACEPSO outperforms the original CPSO in the global searching ability and convergence rate.


Author(s):  
Humberto Martins Mendonça Duarte ◽  
Rafael Lima de Carvalho

Particle swarm optimization (PSO) is a well-known metaheuristic, whose performance for solving global optimization problems has been thoroughly explored. It has been established that without proper manipulation of the inertia weight parameter, the search for a global optima may fail. In order to handle this problem, we investigate the experimental performance of a PSO-based metaheuristic known as HPSO-SSM, which uses a logistic map sequence to control the inertia weight to enhance the diversity in the search process, and a spiral-shaped mechanism as a local search operator, as well as two dynamic correction factors to the position formula. Thus, we present an application of this variant for solving high-dimensional optimization problems, and evaluate its effectiveness against 24 benchmark functions. A comparison between both methods showed that the proposed variant can escape from local optima, and demonstrates faster convergence for almost every evaluated function.


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sensors ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 1292 ◽  
Author(s):  
Siqiu Guo ◽  
Tao Zhang ◽  
Yulong Song ◽  
Feng Qian

2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


Sign in / Sign up

Export Citation Format

Share Document