scholarly journals Generalized Derivations on Power Values of Lie Ideals in Prime and Semiprime Rings

Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.

Author(s):  
Rita Prestigiacomo

Let [Formula: see text] be a prime ring with [Formula: see text], [Formula: see text] a non-central Lie ideal of [Formula: see text], [Formula: see text] its Martindale quotient ring and [Formula: see text] its extended centroid. Let [Formula: see text] and [Formula: see text] be nonzero generalized derivations on [Formula: see text] such that [Formula: see text] Then there exists [Formula: see text] such that [Formula: see text] and [Formula: see text], for any [Formula: see text], unless [Formula: see text], where [Formula: see text] is the algebraic closure of [Formula: see text].


2010 ◽  
Vol 7 (4) ◽  
pp. 1426-1431
Author(s):  
Baghdad Science Journal

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2016 ◽  
Vol 34 ◽  
pp. 27-33
Author(s):  
Kalyan Kumar Dey ◽  
Akhil Chandra Paul

Let M be a ?-ring and let D: M x M ->M be a symmetric bi-derivation with the trace d: M -> M denoted by d(x) = D(x, x) for all x?M. The objective of this paper is to prove some results concerning symmetric bi-derivation on prime and semiprime ?-rings. If M is a 2-torsion free prime ?-ring and D ? 0 be a symmetric bi-derivation with the trace d having the property d(x)?x - x?d(x) = 0 for all x?M and ???, then M is commutative. We also prove another result in ?-rings setting analogous to that of Posner for prime rings.GANIT J. Bangladesh Math. Soc.Vol. 34 (2014) 27-33


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


Author(s):  
Mazen O. Karim

             Let  be a 2 and 3 – torsion free prime ring then  if  admits a non-zero Jordan  left tri- derivation   ,   then  is commutative ,also we give some properties of permuting left tri - derivations.


2019 ◽  
Vol 26 (01) ◽  
pp. 93-104
Author(s):  
Vincenzo De Filippis ◽  
Nadeem ur Rehman

Let R be a prime ring of characteristic different from 2, Z(R) its center, L a Lie ideal of R, and m, n, s, t ≥ 1 fixed integers with t ≤ m + n + s. Suppose that α is a non-trivial automorphism of R and let Φ(x, y) = [x, y]t – [x, y]m [α([x, y]),[x, y]]n [x, y]s. Thus, (a) if Φ(u, v) = 0 for any u, v ∈ L, then L ⊆ Z(R); (b) if Φ(u, v) ∈ Z(R) for any u, v ∈ L, then either L ⊆ Z(R) or R satisfies s4, the standard identity of degree 4. We also extend the results to semiprime rings.


1997 ◽  
Vol 20 (2) ◽  
pp. 409-411
Author(s):  
Vishnu Gupta

In this paper we prove that ifRis a ring with1as an identity element in whichxm−xn∈Z(R)for allx∈Rand fixed relatively prime positive integersmandn, one of which is even, thenRis commutative. Also we prove that ifRis a2-torsion free ring with1in which(x2k)n+1−(x2k)n∈Z(R)for allx∈Rand fixed positive integernand non-negative integerk, thenRis commutative.


2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


Sign in / Sign up

Export Citation Format

Share Document