scholarly journals Jordan ?-Centralizers of Prime and Semiprime Rings

2010 ◽  
Vol 7 (4) ◽  
pp. 1426-1431
Author(s):  
Baghdad Science Journal

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.


2016 ◽  
Vol 34 ◽  
pp. 27-33
Author(s):  
Kalyan Kumar Dey ◽  
Akhil Chandra Paul

Let M be a ?-ring and let D: M x M ->M be a symmetric bi-derivation with the trace d: M -> M denoted by d(x) = D(x, x) for all x?M. The objective of this paper is to prove some results concerning symmetric bi-derivation on prime and semiprime ?-rings. If M is a 2-torsion free prime ?-ring and D ? 0 be a symmetric bi-derivation with the trace d having the property d(x)?x - x?d(x) = 0 for all x?M and ???, then M is commutative. We also prove another result in ?-rings setting analogous to that of Posner for prime rings.GANIT J. Bangladesh Math. Soc.Vol. 34 (2014) 27-33


Author(s):  
Mazen O. Karim

             Let  be a 2 and 3 – torsion free prime ring then  if  admits a non-zero Jordan  left tri- derivation   ,   then  is commutative ,also we give some properties of permuting left tri - derivations.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
Mohammad Ashraf ◽  
Nadeem-ur-Rehman ◽  
Shakir Ali ◽  
Muzibur Mozumder

AbstractThe main purpose of this paper is to prove the following result: Let R be a 2-torsion free semiprime *-ring. Suppose that θ, φ are endomorphisms of R such that θ is onto. If there exists an additive mapping F: R → R associated with a (θ, φ)-derivation d of R such that F(xx*) = F(x)θ(x*) + φ(x)d(x*) holds for all x ∈ R, then F is a generalized (θ, φ)-derivation. Further, some more related results are obtained.


2006 ◽  
Vol 43 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Joso Vukman ◽  
Irena Kosi-Ulbl

Let Rbe a 2-torsion free semiprime *-ring and let T:R?Rbe an additive mapping such that T(xx*)=T(x)x* is fulfilled for all x ?R. In this case T(xy)=T(x)yholds for all pairs x,y?R.


1993 ◽  
Vol 47 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Matej Brešar

A mapping f of a ring R into itself is called skew-commuting on a subset S of R if f(s)s + sf(s) = 0 for all s ∈ S. We prove two theorems which show that under rather mild assumptions a nonzero additive mapping cannot have this property. The first theorem asserts that if R is a prime ring of characteristic not 2, and f: R → R is an additive mapping which is skew-commuting on an ideal I of R, then f(I) = 0. The second theorem states that zero is the only additive mapping which is skew-commuting on a 2-torsion free semiprime ring.


2015 ◽  
Vol 65 (6) ◽  
Author(s):  
Maja Fos̆ner

AbstractIn this paper we prove the following result. Let R be a 2-torsion free semiprime ring and let f : R → R be an additive mapping satisfying the relation f(x)x


Sign in / Sign up

Export Citation Format

Share Document