scholarly journals A pair of generalized derivations in prime, semiprime rings and in Banach algebras

2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.

2015 ◽  
Vol 65 (5) ◽  
Author(s):  
Basudeb Dhara ◽  
Shervin Sahebi ◽  
Venus Rahmani

AbstractLet R be a prime ring with center Z(R) and extended centroid C, H a non-zero generalized derivation of R and n ≥ 1 a fixed integer. In this paper we study the situations:(1) H(u(2) H(u


Author(s):  
Rita Prestigiacomo

Let [Formula: see text] be a prime ring with [Formula: see text], [Formula: see text] a non-central Lie ideal of [Formula: see text], [Formula: see text] its Martindale quotient ring and [Formula: see text] its extended centroid. Let [Formula: see text] and [Formula: see text] be nonzero generalized derivations on [Formula: see text] such that [Formula: see text] Then there exists [Formula: see text] such that [Formula: see text] and [Formula: see text], for any [Formula: see text], unless [Formula: see text], where [Formula: see text] is the algebraic closure of [Formula: see text].


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bilal Ahmad Wani

Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, Gscr; : ℛ → ℛ satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{G}\left( x \right) + \mathcal{G}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{G}\left( {{x^{n - 1}}} \right), 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) D ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , 2\mathcal{G}\left( {{x^n}} \right) = \mathcal{G}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)- derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.


2010 ◽  
Vol 17 (spec01) ◽  
pp. 841-850 ◽  
Author(s):  
Vincenzo De Filippis ◽  
Nadeem ur Rehman

Let R be a prime ring of characteristic different from 2 with extended centroid C. Let F be a generalized derivation of R, L a non-central Lie ideal of R, f(x1, …, xn) a polynomial over C and f(R)={f(r1, …, rn): ri ∈ R}. We study the following cases: (1) [F(u), F(v)]k=0 for all u, v ∈ L, where k ≥ 1 is a fixed integer; (2) [F(u), F(v)] = 0 for all u, v ∈ f(R); (3) F(u) ◦ F(v)=0 for all u, v ∈ f(R); (4) F(u) ◦ F(v)=u ◦ v for all u, v ∈ f(R). We obtain a description of the structure of R and information on the form of F.


Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850055
Author(s):  
Basudeb Dhara ◽  
Krishna Gopal Pradhan ◽  
Shailesh Kumar Tiwari

Let [Formula: see text] be a noncommutative prime ring with its Utumi ring of quotients [Formula: see text], [Formula: see text] the extended centroid of [Formula: see text], [Formula: see text] a generalized derivation of [Formula: see text] and [Formula: see text] a nonzero ideal of [Formula: see text]. If [Formula: see text] satisfies any one of the following conditions: (i) [Formula: see text], [Formula: see text], [Formula: see text], (ii) [Formula: see text], where [Formula: see text] is a fixed integer, then one of the following holds: (1) there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (2) [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (3) char [Formula: see text], [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and an outer derivation [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text].


2014 ◽  
Vol 96 (3) ◽  
pp. 326-337 ◽  
Author(s):  
M. TAMER KOŞAN ◽  
TSIU-KWEN LEE

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a semiprime ring with extended centroid $C$ and with maximal right ring of quotients $Q_{mr}(R)$. Let $d{:}\ R\to Q_{mr}(R)$ be an additive map and $b\in Q_{mr}(R)$. An additive map $\delta {:}\ R\to Q_{mr}(R)$ is called a (left) $b$-generalized derivation with associated map $d$ if $\delta (xy)=\delta (x)y+bxd(y)$ for all $x, y\in R$. This gives a unified viewpoint of derivations, generalized derivations and generalized $\sigma $-derivations with an X-inner automorphism $\sigma $. We give a complete characterization of $b$-generalized derivations of $R$ having nilpotent values of bounded index. This extends several known results in the literature.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2015 ◽  
Vol 34 (2) ◽  
pp. 29
Author(s):  
Shuliang Huang ◽  
Nadeem Ur Rehman

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$  fixed positive integers.  If $R$ admits a generalized derivation $F$ associated with a  nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for  all $x,y\in I$, then $R$ is commutative. Moreover  we also examine the case when $R$ is a semiprime ring.


Sign in / Sign up

Export Citation Format

Share Document