scholarly journals On Distance Function in Some New Analytic Bergman Type Spaces inℂn

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Romi F. Shamoyan ◽  
Olivera R. Mihić

We extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to some new analytic Bergman type spaces in higher dimensions inℂn. Also, we study the same problem in anisotropic mixed normh(p,q,s)spaces consisting ofn-harmonic functions on the unit polydisc ofℂn.

2014 ◽  
Vol 66 (2) ◽  
pp. 284-302
Author(s):  
Kjersti Solberg Eikrem

Abstract. Let h∞v (D) and h∞v (B) be the spaces of harmonic functions in the unit disk and multidimensional unit ball admitting a two-sided radial majorant v(r). We consider functions v that fulfill a doubling condition. In the two-dimensional case letwhere ξ ={ξji} is a sequence of random subnormal variables and aji are real. In higher dimensions we consider series of spherical harmonics. We will obtain conditions on the coefficients aji that imply that u is in h∞v (B) almost surely. Our estimate improves previous results by Bennett, Stegenga, and Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied to Bloch-type spaces, and we obtain a similar characterization for these spaces that generalizes results by Anderson, Clunie, and Pommerenke and by Guo and Liu.


1999 ◽  
Vol 235 (2) ◽  
pp. 470-477 ◽  
Author(s):  
Jay M Jahangiri
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Guanghua He ◽  
Xi Fu ◽  
Hancan Zhu

We study Bloch-type spaces of minimal surfaces from the unit disk D into Rn and characterize them in terms of weighted Lipschitz functions. In addition, the boundedness of a composition operator Cϕ acting between two Bloch-type spaces is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yongmin Liu ◽  
Yanyan Yu

LetH(𝔻)be the space of analytic functions on𝔻andu∈H(𝔻). The boundedness and compactness of the multiplication operatorMufromF(p,q,s),(or  F0(p,q,s))spaces tonth weighted-type spaces on the unit disk are investigated in this paper.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Stevo Stević

The boundedness and compactness of an integral-type operator recently introduced by the author from Zygmund-type spaces to the mixed-norm space on the unit ball are characterized here.


Author(s):  
Nikolai Vasilevski
Keyword(s):  

1970 ◽  
Vol 22 (4) ◽  
pp. 855-862
Author(s):  
Y. K. Kwon ◽  
L. Sario

Representations of harmonic functions by means of integrals taken over the harmonic boundary ΔR of a Riemann surface R enable one to study the classification theory of Riemann surfaces in terms of topological properties of ΔR (cf. [6; 4; 1; 7]). In deducing such integral representations, essential use is made of the fact that the functions in question attain their maxima and minima on ΔR.The corresponding maximum principle in higher dimensions was discussed for bounded harmonic functions in [3]. In the present paper we consider Dirichlet-finite harmonic functions. We shall show that every such function on a subregion G of a Riemannian N-space R attains its maximum and minimum on the set , where ∂G is the relative boundary of G in R and the closures are taken in Royden's compactification R*. As an application we obtain the harmonic decomposition theorem relative to a compact subset K of R* with a smooth ∂(K ∩ R).


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Romi F. Shamoyan ◽  
Olivera Mihić

Based on recent results on boundedness of Bergman projection with positive Bergman kernel in analytic spaces in various types of domains inCn, we extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to some new Bergman type spaces in Lie ball, bounded symmetric domains of tube type, Siegel domains, and minimal bounded homogeneous domains.


Sign in / Sign up

Export Citation Format

Share Document