scholarly journals Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Farid Amir-Ghiasvand ◽  
Abbas Nowzari-Dalini ◽  
Vida Momenzadeh

To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introducePin-Align, a new tool for local alignment of protein-protein interaction networks.Pin-Alignaccuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown thatPin-Alignhas higher sensitivity and specificity in terms of KEGG Ortholog groups.

2016 ◽  
Vol 32 (17) ◽  
pp. i658-i664 ◽  
Author(s):  
Somaye Hashemifar ◽  
Jianzhu Ma ◽  
Hammad Naveed ◽  
Stefan Canzar ◽  
Jinbo Xu

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 140 ◽  
Author(s):  
Giovanni Micale ◽  
Andrea Continella ◽  
Alfredo Ferro ◽  
Rosalba Giugno ◽  
Alfredo Pulvirenti

Comparing protein interaction networks can reveal interesting patterns of interactions for a specific function or process in distantly related species. In this paper we present GASOLINE, a Cytoscape app for multiple local alignments of PPI (protein-protein interaction) networks. The app is based on the homonymous greedy and stochastic algorithm. GASOLINE starts with the identification of sets of similar nodes, called seeds of the alignment. Alignments are then extended in a greedy manner and finally refined. Both the identification of seeds and the extension of alignments are performed through an iterative Gibbs sampling strategy. GASOLINE is a Cytoscape app for computing and visualizing local alignments, without requiring any post-processing operations. GO terms can be easily attached to the aligned proteins for further functional analysis of alignments. GASOLINE can perform the alignment task in few minutes, even for a large number of input networks.


Author(s):  
Vu Thi Ngoc Anh ◽  
Nguyen Trong Dong ◽  
Nguyen Vu Hoang Vuong ◽  
Dang Thanh Hai ◽  
Do Duc Dong

Aligning protein-protein interaction networks from different species is a useful mechanism for figuring out orthologous proteins, predicting/verifying protein unknown functions or constructing evolutionary relationships. The network alignment problem is proved to be NP-hard, requiring exponential-time algorithms, which is not feasible for the fast growth of biological data. In this paper, we present a novel protein-protein interaction global network alignment algorithm, which is enhanced with an extended large neighborhood search heuristics. Evaluated on benchmark datasets of yeast, fly, human and worm, the proposed algorithm outperforms state-of-the-art. Furthermore, the complexity of ours is polynomial, thus being scalable to large biological networks in practice. Keywords Heuristic, Protein-protein interaction networks, network alignment, neighborhood search References [1] R.L. Finley, R. Brent, Interaction mating reveals binary and ternary connections between drosophila cell cycle regulators. Proc. Natl Acad. Sci. USA. 91 (1994) 12980-12984.[2] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature. 422 (2003) 198-207.[3] C.S. Goh, F.R. Cohen, Co-evolutionary analysis reveals insights into protein-protein interactions, J. Mol. Biol. 324 (2002) 177-192.[4] J.D. Han et al, Evidence for dynamically organized modularity in the yeast proteinprotein interaction network, Nature. 430 (2004) 88-93.[5] G.D. Bader, C.W. Hogue, Analyzing yeast protein-protein interaction data obtained from different sources, Nat. Biotechnol. 20 (2002) 991-997.[6] H.B. Hunter et al, Evolutionary rate in the protein interaction network, Science. 296 (2002) 750-752.[7] J. Dutkowski, J. Tiuryn,J, Identification of functional modules from conserved ancestral protein-protein interactions, Bioinformatics. 23 (2007) i149-i158.[8] B.P. Kelley et al, Conserved pathways within bacteria and yeast as revealed by global protein network alignment, Proc. Natl Acad. Sci. USA. 100 (2003) 11394-11399.[9] O. Kuchaiev, N. Przˇ ulj, Integrative network alignment reveals large regions of global network similarity in yeast and human, Bioinformatics. 27 (2011) 1390-1396.[10] M. Remm et al, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons, J. Mol. Biol. 314 (2001) 1041-1052. [11] L. Chindelevitch et al, Local optimization for global alignment of protein interaction networks, In: Pacific Symposium on Biocomputing, Hawaii, USA, 2010, pp. 123-132.[12] E. hmet, Aladağ, Cesim Erten, SPINAL: scalable protein interaction network alignment, Bioinformatics. Volume 29(7) (2013) 917-924. https://doi.org/10.1093/bioinformatics/btt071.[13] B.P. Kelley et al, Pathblast: a tool for alignment of protein interaction networks, Nucleic Acids Res. 32 (2004) 83-88.[14] R. Sharan et al, Conserved patterns of protein interaction in multiple species, Proc. Natl Acad. Sci. USA. 102 (2005) 1974-1979.[15] M. Koyuturk et al, Pairwise alignment of protein interaction networks, J. Comput. Biol. 13 (2006) 182-199.[16] M. Narayanan, R.M. Karp, Comparing protein interaction networks via a graph match-and-split algorithm, J. Comput. Biol. 14 (2007) 892-907.[17] J. Flannick et al, Graemlin: general and robust alignment of multiple large interaction networks, Genome Res. 16 (2006) 1169-1181.[18] R. Singh et al, Global alignment of multiple protein interaction networks. In: Pacific Symposium on Biocomputing, 2008, pp. 303-314.[19] M. Zaslavskiy et al, Global alignment of protein-protein interaction networks by graph matching methods, Bioinformatics. 25 (2009) 259-267.[20] L. Chindelevitch, Extracting information from biological networks. PhD Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 2010.[21] Do Duc Dong et al, An efficient algorithm for global alignment of protein-protein interaction networks, Proceeding of ATC15, 2015, pp. 332-336.[22] S. Ropke, D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transportation Science. 40 (2006) 455-472. https:// doi.org/10.1287/trsc.1050.0135.[23] P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems, Technical report, Department of Computer Science, University of Strathclyde, Scotland, 1997.[24] Roman Lutz, Adaptive Large Neighborhood Search, Bachelor thesis, Ulm University, 2014.[25] M.A. Trick, A linear relaxation heuristic for the generalized assignment prob-lem, Naval Research Logistics. 39 (1992) 137-151.[26] J.Y. Potvin, M. Rousseau, Parallel Route Building Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows, European Journal of Operational Research. 66(3) (1993) pp. 331-340.[27] https://www.researchgate.net/figure/Network-alignment-a-A-dashed-arrow-from-a-node-i-V1-from-the-first-network-G1-V1-E_fig1_24017968[28] J.M. Peter, Van Laarhoven, H.L. Emile, Aarts. Simulated annealing. Springer, 1987.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 140 ◽  
Author(s):  
Giovanni Micale ◽  
Andrea Continella ◽  
Alfredo Ferro ◽  
Rosalba Giugno ◽  
Alfredo Pulvirenti

Comparing protein interaction networks can reveal interesting patterns of interactions for a specific function or process in distantly related species. In this paper we present GASOLINE, a Cytoscape app for multiple local alignments of PPI (protein-protein interaction) networks. The app is based on the homonymous greedy and stochastic algorithms. To the authors knowledge, it is the first Cytoscape app for computing and visualizing local alignments, without requiring any post-processing operations. GO terms can be easily attached to the aligned proteins for further functional analysis of alignments. GASOLINE can perform the alignment task in few minutes, even for a large number of input networks.


Sign in / Sign up

Export Citation Format

Share Document