fast approach
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 73)

H-INDEX

26
(FIVE YEARS 6)

2022 ◽  
Vol 130 (3) ◽  
pp. 1371-1386
Author(s):  
Deng Qin ◽  
Tian Li ◽  
Honglin Wang ◽  
Jizhong Yang ◽  
Yao Jiang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6024
Author(s):  
Agata Swiatly-Blaszkiewicz ◽  
Dagmara Pietkiewicz ◽  
Jan Matysiak ◽  
Barbara Czech-Szczapa ◽  
Katarzyna Cichocka ◽  
...  

Since honeybee pollen is considered a “perfectly complete food” and is characterized by many beneficial properties (anti-inflammatory, antioxidant, anti-bacterial, etc.), it has begun to be used for therapeutic purposes. Consequently, there is a high need to develop methods for controlling its composition. A thorough bee pollen analysis can be very informative regarding its safety for consumption, the variability of its composition, its biogeographical origin, or harvest date. Therefore, in this study, two reliable and non-destructive spectroscopy methods, i.e., ED-XRF and ATR–FTIR, are proposed as a fast approach to characterize bee pollen. The collected samples were derived from apiaries located in west-central Poland. Additionally, some commercially available samples were analyzed. The applied methodology was optimized and combined with sophisticated chemometric tools. Data derived from IR analyses were also subjected to two-dimensional correlation spectroscopy. The developed ED-XRF method allowed the reliable quantification of eight macro- and micro-nutrients, while organic components were characterized by IR spectroscopy. Principal component analysis, cluster analysis, and obtained synchronous and asynchronous maps allowed the study of component changes occurring dependently on the date and location of harvest. The proposed approach proved to be an excellent tool to monitor the variability of the inorganic and organic content of bee pollen.


2021 ◽  
pp. 3061-3070
Author(s):  
L. N. M. Tawfiq ◽  
Z. H. Kareem

     This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution, compared with other methods that can be used to solve systems of PDEs.


2021 ◽  
Author(s):  
Qi Bao ◽  
Wanyue Xu ◽  
Zhongzhi Zhang

Abstract Edge centrality has found wide applications in various aspects. Many edge centrality metrics have been proposed, but the crucial issue that how good the discriminating power of a metric is, with respect to other measures, is still open. In this paper, we address the question about the benchmark of the discriminating power of edge centrality metrics. We first use the automorphism concept to define equivalent edges, based on which we introduce a benchmark for the discriminating power of edge centrality measures and develop a fast approach to compare the discriminating power of different measures. According to the benchmark, for a desirable measure, equivalent edges have identical metric scores, while inequivalent edges possess different scores. However, we show that even in a toy graph, inequivalent edges cannot be discriminated by three existing edge centrality metrics. We then present a novel edge centrality metric called forest centrality (FC). Extensive experiments on real-world networks and model networks indicate that FC has better discriminating power than three existing edge centrality metrics.


2021 ◽  
pp. 147592172110419
Author(s):  
Zixian Zhou ◽  
Zhiwen Cui ◽  
Tribikram Kundu

Thin spherical shell structures are wildly used as pressure vessels in the industry because of their property of having equal in-plane normal stresses in all directions. Since very large pressure difference between the inside and outside of the wall exists, any formation of defects in the pressure vessel wall has a huge safety risk. Therefore, it is necessary to quickly locate the area where the defect maybe located in the early stage of defect formation and make repair on time. The conventional acoustic source localization techniques for spherical shells require either direction-dependent velocity profile knowledge or a large number of sensors to form an array. In this study, we propose a fast approach for acoustic source localization on thin isotropic and anisotropic spherical shells. A solution technique based on the time difference of arrival on a thin spherical shell without the prior knowledge of direction-dependent velocity profile is provided. With the help of “L”-shaped sensor clusters, only 6 sensors are required to quickly predict the acoustic source location for anisotropic spherical shells. For isotropic spherical shells, only 4 sensors are required. Simulation and experimental results show that this technique works well for both isotropic and anisotropic spherical shells.


2021 ◽  
pp. 80-98
Author(s):  
Xingbo Wang ◽  
Junjian Zhong
Keyword(s):  

2021 ◽  
Author(s):  
Sahman Soleimani ◽  
Abdolreza Sarvghad Moghadam ◽  
Armin Aziminejad

Abstract Bidirectional energy-based pushover (BEP) procedure is expanded in this paper to predict approximate incremental dynamic analysis (IDA) results of medium- and high-rise structures. BEP is a unique approach in the sense that it provides approximate IDA curves under the simultaneous effect of two horizontal components of ground motions and is applicable to both symmetric- and asymmetric-plan buildings. The method has already proved to be useful in low-rise buildings, and this study aims to evaluate its suitability for mid- and high-rise structures. Six structural models were considered in this evaluation in two groups of 9- and 20-story buildings, with each group consisting of a symmetric, a one-way asymmetric, and a two-way asymmetric-plan building. The results revealed that the method was sufficiently accurate to provide approximate IDA curves for all structural models. The method had similar accuracy in the asymmetric models as it did in the symmetric models, although the accuracy slightly decreased as the height of the building increased. BEP also provided good estimates of the demands in both ‘flexible’ and ‘stiff sides’ of the asymmetric buildings as well as the demands over the height of the buildings.


Sign in / Sign up

Export Citation Format

Share Document