scholarly journals Structural Damage Identification Based on the Minimum System Realization and Sensitivity Analysis

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
W. R. Li ◽  
Y. F. Du ◽  
S. Y. Tang ◽  
L. J. Zhao

On the basis of the thought that the minimum system realization plays the role as a coagulator of structural information and contains abundant information on the structure, this paper proposes a new method, which combines minimum system realization and sensitivity analysis, for structural damage detection. The structural damage detection procedure consists of three steps: (1) identifying the minimum system realization matrixes A, B, and R using the structural response data; (2) defining the mode vector, which is based on minimum system realization matrix, by introducing the concept of the measurement; (3) identifying the location and severity of the damage step by step by continuously rotating the mode vector. The proposed method was verified through a five-floor frame model. As demonstrated by numerical simulation, the proposed method based on the combination of the minimum realization system and sensitivity analysis is effective for the damage detection of frame structure. This method not only can detect the damage and quantify the damage severity, but also is not sensitive to the noise.

2013 ◽  
Vol 639-640 ◽  
pp. 1033-1037
Author(s):  
Yong Mei Li ◽  
Bing Zhou ◽  
Guo Fu Sun ◽  
Bo Yan Yang

The research to identify and locate the damage to the engineering structure mainly aimed at some simple structure forms before, such as beam and framework. Damage shows changes of local characteristics of the signal, while wavelet analysis can reflect local damage traits of the signal in time domain and frequency domain. For confirming the validity and applicability of structural damage identification methods, wavelet analysis is used to spatial structural damage detection. The wavelet analysis technique provides new ideas and methods of spatial steel structural damage detection. Based on the theory of wavelet singularity detection,with the injury signal of modal strain energy as structural damage index,the mixing of the modal strain energy and wavelet method to identify and locate the damage to the spatial structure is considered. The multiplicity of the bars and nodes can be taken into account, and take the destructive and nondestructive modal strain energy of Kiewitt-type reticulated shell with 40m span as an example of numerical simulation,the original damage signal and the damage signal after wavelet transformation is compared. The location of the declining stiffness identified by the maximum of wavelet coefficients,analyzed as signal by db1 wavelet,and calculate the graph relation between coefficients of the wavelets and the damage to the structure by discrete or continuous wavelet transform, and also check the accuracy degree of this method with every damage case. Finally,the conclusion is drawn that the modal strain energy and wavelet method to identify and locate the damage to the long span reticulated shell is practical, effective and accurate, that the present method as a reliable and practical way can be adopted to detect the single and several locations of damage in structures.


2013 ◽  
Vol 681 ◽  
pp. 271-275
Author(s):  
Jing Li ◽  
Pei Jun Wei

Based on the vibration information, a mixed sensitivity method is presented to identify structural damage by combining the eigenvalue sensitivity with the generalized flexibility sensitivity. The sensitivity of structural generalized flexibility matrix is firstly derived by using the first frequency and the corresponding mode shape only and then the eigenvalue sensitivity together with the generalized flexibility sensitivity are combined to calculate the elemental damage parameters. The presented mixed perturbation approach is demonstrated by a numerical example concerning a simple supported beam structure. It has been shown that the proposed procedure is simple to implement and may be useful for structural damage identification.


1997 ◽  
Vol 4 (1) ◽  
pp. 27-37 ◽  
Author(s):  
C. H. Jenkins ◽  
L. Kjerengtroen ◽  
H. Oestensen

Structural damage detection by nondestructive methods is highly desirable. Changes in modal parameters such as frequency, damping, and mode shape are particularly inviting. Evidence is presented here that reveals that static deflection can, in many cases, be a more sensitive predictor of structural damage than frequency. The reasons for this are illuminated within, and hinge on very fundamental issues about the very nature of structural response. Furthermore, static deflection measurements are often easier to make, with higher levels of accuracy than dynamic measurements. Comparisons are made between theoretical models and experimental results for simple structures, with extensions given to more complex structures.


Author(s):  
Hui Li ◽  
Yuequan Bao

With the aim to decrease the uncertainties of structural damage detection, two fusion models are presented in this paper. The first one is a weighted and selective fusion method for combing the multi-damage detection methods based on the integration of artificial neural network, Shannon entropy and Dempster-Shafer (D-S) theory. The second one is a D-S based approach for combing the damage detection results from multi-sensors data sets. Numerical study on the Binzhou Yellow River Highway Bridge and an experimental of a 20-bay rigid truss structure were carried out to validate the uncertainties decreasing ability of the proposed methods for structural damage detection. The results show that both of the methods proposed are useful to decrease the uncertainties of damage detection results.


2019 ◽  
Vol 9 (16) ◽  
pp. 3376 ◽  
Author(s):  
Shuai Teng ◽  
Gongfa Chen ◽  
Gen Liu ◽  
Jianbin Lv ◽  
Fangsen Cui

In this paper, a convolutional neural network (CNN) was used to extract the damage features of a steel frame structure. As structural damage could induce changes of the modal parameters of the structure, the convolution operation was used to extract the features of modal parameters, and a classification algorithm was used to judge the damage state of the structure. The finite element method was applied to analyze the free vibration of the steel frame and obtain the first-order modal strain energy for various damage scenarios, which was used as the CNN training sample. Then vibration experiments were carried out, and modal parameters were obtained from the modal analysis of the vibration signals. The experimental data were inputted into the CNN to verify its damage detection capability. The result showed that the CNN was effective in detecting the intact structure, single damage, and multi damages with an accuracy of 100%. For comparison, the same samples were also applied to the traditional back propagation (BP) neural network, which failed to detect the intact structure and multiple-damage cases. It was found that: (1) The proposed CNN could be trained from finite element simulation data and used in real frame structure damage detection, and it performed better in structural damage detection than BP neural networks; (2) the measured data of a real structure could be supplemented by numerical simulation data, and satisfactory results have been demonstrated.


2021 ◽  
Vol 11 (6) ◽  
pp. 2610
Author(s):  
Jongbin Won ◽  
Jong-Woong Park ◽  
Soojin Jang ◽  
Kyohoon Jin ◽  
Youngbin Kim

In the field of structural-health monitoring, vibration-based structural damage detection techniques have been practically implemented in recent decades for structural condition assessment. With the development of deep-learning networks that make automatic feature extraction and high classification accuracy possible, deep-learning-based structural damage detection has been gaining significant attention. The deep-learning neural networks come with fixed input and output size, and input data must be downsampled or cropped to the predetermined input size of the networks to obtain desired output of the network. However, the length of input data (i.e., sensing data) is associated with the excitation quality of a structure, adjusting the size of the input data while maintaining the excitation quality is critical to ensure high accuracy of the deep-learning-based structural damage detection. To address this issue, natural-excitation-technique-based data normalization and the use of 1-D convolutional neural networks for automated structural damage detection are presented. The presented approach converts input data to predetermined size using cross-correlation and uses convolutional network to extract damage-sensitive feature for automated structural damage identification. Numerical simulations were conducted on a simply supported beam model excited by random and traffic loadings, and the performance was validated under various scenarios. The proposed method successfully detected the location of damage on a beam under random and traffic loadings with accuracies of 99.90% and 99.20%, respectively.


Sign in / Sign up

Export Citation Format

Share Document