scholarly journals On the Stream Function-Vorticity Finite Element Formulation for Incompressible Flow in Porous Media

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Abdellatif Agouzal ◽  
Karam Allali ◽  
Siham Binna

Stream function-vorticity finite element formulation for incompressible flow in porous media is presented. The model consists of the heat equation, the equation for the concentration, and the equations of motion under the Darcy law. The existence of solution for the discrete problem is established. Optimal a priori error estimates are given.

2013 ◽  
Vol 261-262 ◽  
pp. 96-104 ◽  
Author(s):  
Carl Sandström ◽  
Fredrik Larsson ◽  
Kenneth Runesson ◽  
Håkan Johansson

1997 ◽  
Vol 119 (3) ◽  
pp. 273-278 ◽  
Author(s):  
A. R. Johnson ◽  
A. Tessler ◽  
M. Dambach

A viscoelastic higher-order thick beam finite element formulation is extended to include elastodynamic deformations. The material constitutive law is a special differential form of the Maxwell solid, which employs viscous strains as internal variables to determine the viscous stresses. The total time-dependent stress is the superposition of its elastic and viscous components. In the constitutive model, the elastic strains and the conjugate viscous strains are coupled through a system of first-order ordinary differential equations. The use of the internal strain variables allows for a convenient finite element formulation. The elastodynamic equations of motion are derived from the virtual work principle. Computational examples are carried out for a thick orthotropic cantilevered beam. Relaxation, creep, relaxation followed by free damped vibrations, and damping related modal interactions are discussed.


Sign in / Sign up

Export Citation Format

Share Document