A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework

2020 ◽  
Vol 370 ◽  
pp. 113073
Author(s):  
Jeferson Wilian Dossa Fernandes ◽  
Andrea Barbarulo ◽  
Hachmi Ben Dhia ◽  
Rodolfo André Kuche Sanches
2016 ◽  
Vol 138 (6) ◽  
Author(s):  
L. Zhang ◽  
J. M. Zhao ◽  
L. H. Liu

A new stabilized finite element formulation for solving radiative transfer equation is presented. It owns the salient feature of least-squares finite element method (LSFEM), i.e., free of the tuning parameter that appears in the streamline upwind/Petrov–Galerkin (SUPG) finite element method. The new finite element formulation is based on a second-order form of the radiative transfer equation. The second-order term will provide essential diffusion as the artificial diffusion introduced in traditional stabilized schemes to ensure stability. The performance of the new method was evaluated using challenging test cases featuring strong medium inhomogeneity and large gradient of radiative intensity field. It is demonstrated to be computationally efficient and capable of solving radiative heat transfer in strongly inhomogeneous media with even better accuracy than the LSFEM, and hence a promising alternative finite element formulation for solving complex radiative transfer problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Abdellatif Agouzal ◽  
Karam Allali ◽  
Siham Binna

Stream function-vorticity finite element formulation for incompressible flow in porous media is presented. The model consists of the heat equation, the equation for the concentration, and the equations of motion under the Darcy law. The existence of solution for the discrete problem is established. Optimal a priori error estimates are given.


Sign in / Sign up

Export Citation Format

Share Document