scholarly journals Some Single-Machine Scheduling Problems with Learning Effects and Two Competing Agents

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hongjie Li ◽  
Zeyuan Li ◽  
Yunqiang Yin

This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.

2007 ◽  
Vol 24 (02) ◽  
pp. 245-261 ◽  
Author(s):  
JI-BO WANG ◽  
T. C. EDWIN CHENG

This paper deals with the machine scheduling problems with the effects of deterioration and learning. In this model the processing times of jobs are defined as functions of their starting times and positions in a sequence. We introduce polynomial solutions for some single machine problems and flow shop problems. The performance measures include makespan, total completion time, total weighted completion time, and maximum lateness.


2017 ◽  
Vol 34 (02) ◽  
pp. 1750010 ◽  
Author(s):  
Shi-Sheng Li ◽  
Ren-Xia Chen

We study single-machine scheduling problems with job rejection and a deteriorating maintenance activity, where the impact of performing this activity is reflected in a reduction of the job processing times. The duration of the maintenance activity is a linear increasing function of its starting time. The aim is to determine the location of the maintenance activity and the job sequence of the accepted jobs so as to minimize scheduling cost of the accepted jobs plus total penalty of the rejected jobs. When the scheduling measures are the makespan, total completion time and combination of earliness, tardiness and due date cost, we provide polynomial time algorithms to solve these problems, respectively. When the scheduling measures are the maximum tardiness and total weighted completion time under the agreeable ratio assumption, we introduce pseudo-polynomial time algorithms to solve these [Formula: see text]-hard problems, respectively.


2016 ◽  
Vol 33 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Zhenyou Wang ◽  
Cai-Min Wei ◽  
Yu-Bin Wu

This paper deals with the single machine scheduling problem with deteriorating jobs in which there are two distinct families of jobs (i.e., two-agent) pursuing different objectives. In this model the processing time of a job is defined as a function that is proportional to a linear function of its stating time. For the following three scheduling criteria: minimizing the makespan, minimizing the total weighted completion time, and minimizing the maximum lateness, we show that some basic versions of the problem are polynomially solvable. We also establish the conditions under which the problem is computationally hard.


Sign in / Sign up

Export Citation Format

Share Document