scholarly journals Temperature Changes of Pulp Chamber duringIn VitroLaser Welding of Orthodontic Attachments

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Eren İşman ◽  
Rıdvan Okşayan ◽  
Oral Sökücü ◽  
Serdar Üşümez

The use of lasers has been suggested for orthodontists to fabricate or repair orthodontic appliances by welding metals directly in the mouth. This work aimed to evaluate the temperature changes in the pulp chamber during welding of an orthodontic wire to an orthodontic molar band using Nd : YAG laserin vitro. A freshly extracted human third molar with eliminated pulpal tissues was used. J-type thermocouple wire was positioned in the pulp chamber. A conductor gel was used in the transferring of outside temperature changes to the thermocouple wire. An orthodontic band was applied to the molar tooth and bonded using light cured orthodontic cement. Twenty five mm length of 0.6 mm diameter orthodontic stainless steel wires was welded to the orthodontic band using Nd : YAG laser operated at 9.4 watt. Temperature variation was determined as the change from baseline temperature to the highest temperature was recorded during welding. The recorded temperature changes were between 1.8 and 6.8°C (mean: 3.3 ± 1.1°C). The reported critical 5.5°C level was exceeded in only one sample. The results of this study suggest that intraoral use of lasers holds great potential for the future of orthodontics and does not present a thermal risk. Further studies with larger samples and structural analysis are required.

10.2341/05-26 ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 261-265 ◽  
Author(s):  
A. R. Yazici ◽  
A. Müftü ◽  
G. Kugel ◽  
R. D. Perry

Clinical Relevance The thickness of the residual dentin is a critical factor in the reducing thermal transfer to pulp, and this transfer varies with the curing unit used.


2021 ◽  
Vol 37 (2) ◽  
pp. 157-164
Author(s):  
Aysegul Ayhan Bani ◽  
Burcu Balos Tuncer ◽  
Cumhur Tuncer

2019 ◽  
Vol 24 (1) ◽  
pp. 39-43
Author(s):  
Megha Sehgal ◽  
Payal Sharma ◽  
Achint Juneja ◽  
Piush Kumar ◽  
Anubha Verma ◽  
...  

ABSTRACT Introduction: Proximal stripping of enamel is a routine clinical procedure employed in orthodontics to create space or for balancing tooth size discrepancies. This procedure may result in heat transfer to the pulp, predisposing it to histopathological changes and necrosis of the pulp tissue. Objective: To measure the temperature changes in the pulp chamber during different stripping procedures. Methods: 80 proximal surfaces of 40 extracted human premolar teeth were stripped using four techniques: diamond burs in air-rotor handpiece with air-water spray; diamond burs in micromotor handpiece, with and without a coolant spray; and hand-held diamond strips. A J-type thermocouple connected to a digital thermometer was inserted into the pulp chamber for evaluation of temperature during the stripping procedure. Results: An increase in the pulpal temperature was observed for all stripping method. Diamond burs in micromotor handpiece without coolant resulted in the higher increase in temperature (3.5oC), followed by hand-held diamond strips (2.8oC), diamond burs in air-rotor with air-water spray (1.9oC); and the smallest increase was seen with diamond burs in micromotor handpiece with coolant (1.65oC). None of the techniques resulted in temperature increase above the critical level of 5.5oC. Conclusion: Frictional heat produced with different stripping techniques results in increase in the pulpal temperature, therefore, caution is advised during this procedure. A coolant spray can limit the increase in temperature of the pulp.


1990 ◽  
Vol 6 (2) ◽  
pp. 99-102 ◽  
Author(s):  
H.E. Goodis ◽  
J.M. White ◽  
B. Gamm ◽  
L. Watanabe

2020 ◽  
Vol 10 (23) ◽  
pp. 8672
Author(s):  
Monika Machoy ◽  
Liliana Szyszka-Sommerfeld ◽  
Piotr Duda ◽  
Anna Wawrzyk ◽  
Krzysztof Woźniak ◽  
...  

Interference with live tooth tissue during dental treatment affects the temperature within the pulp. The pulp is sensitive to temperature changes, which can cause its inflammation. The aim of this study was to analyze the dynamics of pulp chamber temperature changes in response to the enamel cleaning procedure after orthodontic treatment. In the presented in vitro studies, by using a thermal imaging camera, the change in the temperature of the vestibular wall of the pulp chamber of the incisors and premolars was assessed as a function of time under the influence of polishing the enamel with the silicone rubber and aluminum oxides used during the debonding procedure after completion of orthodontic treatment with fixed appliances. The relationship between dentin density and enamel from changing the chamber temperature was evaluated by using Micro computed tomography, microtomography (micro-CT). The maximum achieved tooth surface temperature during polishing was 52.34 °C without water cooling and 43.15 °C using water cooling. The time after which a safe pulp temperature of 40 °C was obtained without water cooling was 29.4 s, while the time with water cooling was 34.6 s. The correlation between the maximum and average temperature achieved and the density of the teeth was analyzed based on micro-CT scans. No correlation between enamel or dentin density and rise in temperature was found.


2016 ◽  
Vol 50 (4) ◽  
pp. 287-291 ◽  
Author(s):  
Raimond van Duinen ◽  
Saroash Shahid ◽  
Robert Hill ◽  
Domagoj Glavina

Folia Medica ◽  
2016 ◽  
Vol 58 (3) ◽  
pp. 206-210 ◽  
Author(s):  
Blagovesta K. Yaneva ◽  
Plamen I. Zagorchev ◽  
Elena I. Firkova ◽  
Ivan T. Glavinkov

Abstract Aim: To assess temperature changes at specified time intervals during Er:YAG laser scaling and root planing of surfaces with dental calculus. Materials and methods: Fifteen single-rooted teeth with advanced periodontal disease were extracted and fixed in a cylinder thermostat filled with distilled water at constant temperature (35.5°C). A specially designed thermal probe (type K thermocouple) accurate to ±0.1°C over the range from 20°C to 80°C was fitted into the pulp chamber of tooth sample. Scaling and root planing of the mesial and distal root surfaces was performed using an Er:YAG laser (Lite Touch, Syneron Dental, Israel) with a wavelength of 2940 nm, provided with a chisel tip, and at the following settings: output energy 100 mJ and 50 Hz, duration of irradiation - 40 sec, the tip in contact mode oblique to the root surface at an angle of approximately 10-15 degrees and water spray level 5-6. The temperature inside the pulp chamber was measured every 10 sec. Results: The temperature in the pulp chamber taken every 10 seconds and compared with the temperature of 35.5°C at baseline decreased by 1.6°C, 2.4°C, 2.5°C, and 2.5°C for the first, second, third and fourth measurement, respectively. These changes did not reach statistical significance. Conclusion: The Er:YAG laser does not increase the temperature inside the pulp chamber. The assessed changes do not depend on the duration of irradiation which was kept within 40 seconds. Therefore, this treatment modality causes no thermal damage to the pulp under the above defined conditions and can be considered safe.


2021 ◽  
Vol 37 (2) ◽  
pp. 157-164
Author(s):  
Aysegul Ayhan Bani ◽  
Burcu Balos Tuncer ◽  
Cumhur Tuncer

Sign in / Sign up

Export Citation Format

Share Document