water cooling
Recently Published Documents


TOTAL DOCUMENTS

1230
(FIVE YEARS 348)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yicen Zhang ◽  
Yang Du ◽  
Xiaochen Lu ◽  
Pan Zhao ◽  
Yiping Dai

The wide utilization of solar energy is beneficial for the emission reduction of carbon dioxide. This paper proposes a novel power cycle system driven by solar energy, which consists of a recompression supercritical carbon dioxide cycle (RSCO2) and an ammonia-water cooling-power cycle (ACPC). The power system operates in a “self-production and self-sale” mode, which means that the refrigeration capacity produced by the ACPC is utilized to cool the main compressor inlet fluid of the RSCO2. The comprehensive energy and exergy analyses of the proposed novel system are presented. The effects of the six parameters on the system thermodynamic performance are evaluated, which are direct normal irradiation, the ammonia concentration of a basic solution, the pinch point temperature difference of an evaporator, the effectiveness of a recuperator, the pressure ratio of the RSCO2 and the molten salt outlet temperature. The results show that compared with the stand-alone RSCO2, the net power and energy efficiency of the proposed system are improved by 15.94 and 10.61%, respectively. In addition, the increasing ammonia concentration of the basic solution leads to the rise of the ACPC refrigeration output, and the inlet temperature of the main compressor can be declined to 32.97°C with the ammonia concentration of the basic solution of 0.88. Moreover, when the effectiveness of the recuperator in RSCO2 rises up to 0.98, the system energy and exergy efficiencies can reach their maximum value of 30.68 and 33.10%, respectively.


2022 ◽  
Author(s):  
Weining Li ◽  
Khamis Essa ◽  
Sheng Li

Abstract For heat-assisted single point incremental sheet forming (SPIF) works of Ti-6Al-4V sheets, the use of lubricant has shown significant effects on surface quality and geometric accuracy at higher temperatures. Molybdenum disulphide (MoS2) is a common lubricant widely used in SPIF works, however, it usually indicates ineffective performance at high temperatures. This article has studied different lubricants of MoS2 lubricants and proposed a novel mixture of MoS2 to provide better surface quality and improve geometric accuracy. A forming tool with a ball-roller and water channel was designed to enable the MoS2 mixture to pass through the tool tip, allowing easy application of the lubricant on the localised area and reduce the thermal expansion on the ball-roller. Surface roughness analysis has revealed that the water-cooling MoS2 mixture performed well in reducing friction effects and achieved better geometric accuracy. Forming forces measurements, scanning electron microscope (SEM), energy dispersive X-ray Analysis (EDX) and micro-hardness tests also indicated that a higher strain hardening behaviour was detected for the water-cooling MoS2 mixture.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012069
Author(s):  
Juan Lu ◽  
Xiaolei Yan ◽  
Bin Du ◽  
Jing Lu

Abstract For dusty and explosive use environment, especially in coal mines, mostly self-cooled and water-cooled electromagnetic iron separators are used. This article introduces the application of water cooling internal circulation technology to electromagnetic separator equipment for the first time, the advantages and disadvantages of the three cooling methods as well as the development process and application prospects of the internal circulating water-cooled electromagnetic separator are introduced and analyzed respectively.


2021 ◽  
Vol 57 (2) ◽  
pp. 025001
Author(s):  
J E M Perea Martins

Abstract This work presents the design of an inexpensive electronic system to measure water temperature and generate an experimental data set used to verify the fitting between experimental and theoretical curves of a water-cooling process. The cooling constant is computed with three different theoretical methods to check their efficiency and this approach allows the association of theoretical and experimental aspects of physics, mathematics and electronic instrumentation, which can motivate interesting discussions in the classroom.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 86
Author(s):  
Morena Falcone ◽  
Eleonora Palka Bayard De Volo ◽  
Ali Hellany ◽  
Claudio Rossi ◽  
Beatrice Pulvirenti

The environment has gained significant importance in recent years, and companies involved in several technology fields are moving in the direction of eco-friendly solutions. One of the most discussed topics in the automotive field is lithium-ion battery packs for electric vehicles and their battery thermal management systems (BTMSs). This work aims to show the most used lithium-ion battery pack cooling methods and technologies with best working temperature ranges together with the best performances. Different cooling methods are presented and discussed, with a focus on the comparison between air-cooling systems and liquid-cooling systems. In this context, a BTMS for cylindrical cells is presented, where the cells are arranged in staggered lines embedded in a solid structure and cooled through forced convection within channels. The thermal behavior of this BTMS is simulated by employing a computational fluid dynamics (CFD) approach. The effect of the geometry of the BTMS on the cell temperature distribution is obtained. It is shown that the use of materials with additives for the solid structure enhances the performance of the system, giving lower temperatures to the cells. The system is tested with air-cooling and water-cooling, showing that the best performances are obtained with water-cooling in terms of cell packing density and lowest cell temperatures.


2021 ◽  
Author(s):  
Xin Zhang ◽  
Jianchao Liu ◽  
Tong Wang ◽  
Qingli Gao ◽  
Jin Han

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8336
Author(s):  
Arnas Majumder ◽  
Roberto Innamorati ◽  
Andrea Frattolillo ◽  
Amit Kumar ◽  
Gianluca Gatto

Our research aims to achieve dual-positive effects in the presented study by raising photovoltaic (PV) panels over the water surface. With this, target experiments were primarily conducted to evaluate the efficiency increments of the PV panel while reducing its operating temperature through passive convective cooling obtained by raising it over water. The following objective was to estimate the reduction in water evaporation due to the shading effect induced by the panel placed inside the same basin. The performance of two PV panels was analyzed, one used for tests, the other as a reference. The characteristic curves were determined under the local environmental conditions of Cagliari, Italy. The true temperature reduction and efficiency gain calculations of panel P1 due to water cooling was achieved via the measured temperatures and calculated efficiencies of panel P2 at environmental conditions. The water height inside the basin was constantly monitored and maintained at approximately 7.5 cm below panel P1, which covered about 17% of the total water surface area. The presence of water underneath P1 leads to its efficiency increment on average by 2.7% (absolute) and about 17.22% (relative). At the same time, temperature of panel P1 dropped by 2.7 °C on average. The comparative water evaporation study conducted with and without P1 inside the basin showed a 30% reduction in water evaporation.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8329
Author(s):  
Björn Pfeiffelmann ◽  
Ali Cemal Benim ◽  
Franz Joos

Thermoelectric generators (TEGs) have the ability to convert waste heat into electrical energy under unfavorable conditions and are becoming increasingly popular in academia, but have not yet achieved a broad commercial success, due to the still comparably low efficiency. To increase the efficiency and economic viability of TEGs, research is performed on the materials on one hand and on the system connection on the other. In the latter case, the net output power of the cooling system plays a key role. At first glance, passive cooling seems preferable to active cooling because it does not affect the net electrical output power. However, as shown in the present review, the active cooling is to be preferred for net output power. The situation is similar in air and water-cooling. Even though air-cooling is easier to set up, the water-cooling should be preferred to achieve higher net output power. It is shown that microchannel cooling has similar hydraulic performance to conventional cooling and inserts increase the net output power of TEG. As the review reveals that active water-cooling should be the method of choice to achieve high net output power, it also shows that a careful optimization is necessary to exploit the potential.


Sign in / Sign up

Export Citation Format

Share Document