scholarly journals Symbol Error Rate for Nonblind Adaptive Equalizers Applicable for the SIMO and FGn Case

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Monika Pinchas

A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may not answer any more on the system’s requirements. Recently, a closed-form approximated expression was derived by the same author for the residual ISI obtained by nonblind adaptive equalizers for the single-input single-output (SISO) case. Up to now, there does not exist a closed-form expression for the residual ISI obtained by nonblind adaptive equalizers for the single-input multiple-output (SIMO) case. Furthermore, there does not exist a closed-form expression for the SER valid for the SISO or SIMO case that takes into account the residual ISI obtained by nonblind adaptive equalizers and is valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of0.5≤H<1. In this paper, we derive a closed-form approximated expression for the residual ISI obtained by nonblind adaptive equalizers for the SIMO case (where SISO is a special case of SIMO), valid for fGn input where the Hurst exponent is in the region of0.5≤H<1. Based on this new expression for the residual ISI, a closed-form approximated expression is obtained for the SER valid for the SIMO and fGn case.

Fisher Snedecor composite fading model is the combination of Nakagami-m and inverse Nakagami-m distribution. The Nakagami-m is used to characterize the small scale fading, whereas shadowing is modeled by inverse Nakagami-m distribution. In this paper, the closed-form expression for moment generating function (MGF) of instantaneous signal to noise ratio (SNR) over independent identically distributed (i.i.d) Fisher-Snedecor composite fading channel using maximum ratio combining (MRC) diversity technique is derived. By using newly derived MGF expression, we derive the closed-form expressions of average bit error rate (ABER) or average symbol error rate (ASER) for different binary and multilevel modulation schemes. The expressions for average channel capacity (ACC) under two adaptive transmission protocols like optimum rate adaption (ORA) and channel inversion with fixed rate (CIFR) are also derived using proposed MGF. Further, the numerical results of newly derived expression are presented and compared with the results of Rayleigh and Nakagami-m distribution which is the special case of Fisher Snedecor composite fading model.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jun-Yi Duan ◽  
Guo-Ping Jiang ◽  
Hua Yang

This paper proposes a single-input multiple-output (SIMO) architecture for correlation delay shift keying (CDSK) modulation technique, and the bit error rate (BER) formula is derived under the assumption of the proposed system over Rayleigh fading channels. The new system employs multiple antennas at the receiver end to form a SIMO structure so as to obtain a diversity gain. Theoretical analysis and simulations show that, at a higher signal-to-noise ratio (SNR), the proposed SIMO-CDSK architecture has an outstanding bit error rate (BER) performance in contrast to the conventional single-input single-output (SISO) CDSK and GCDSK communication system; for the given SNR, the diversity gain of the proposed system will be improved with the number of receiver antennas increasing; for different SNRs, the best performance of the proposed system can be obtained by selecting the reasonable spreading factor; because the performance of SIMO-CDSK system is independent of the time delay, the proposed system has better security than GCDSK system.


2020 ◽  
Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Michelle S. P. Facina ◽  
Ricardo Correia Ferreira ◽  
Gustavo Fraidenraich

It is known that the Central Limit Theorem (CLT) is not always the most appropriate tool for deriving closed-form expressions. We evaluate a Single-Input Single-Output (SISO) system performance in which the Large Intelligent Surface (LIS) acts as a scatterer. The direct link between the transmitting and receiving devices is negligible. Quantization phase errors are considered since the high precision configuration of the reflection phases is not always feasible. We derive exact closed-form expressions for the spectral efficiencies, outage probabilities, and average symbol error rate (SER) of different modulations. We assume a more comprehensive scenario in which $b$ bits are dedicated to the LIS elements' phase adjustment. From Monte Carlo simulations, we prove the excellent accuracy of our approach and investigate the behavior of power scaling law and power required to reach a specific capacity, depending on the number of reflecting elements. We show that the LIS with approximately fifty elements and four dedicated bits for phase quantization outperforms the conventional system performance without LIS.


2020 ◽  
Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Michelle S. P. Facina ◽  
Ricardo Correia Ferreira ◽  
Gustavo Fraidenraich

It is known that the Central Limit Theorem (CLT) is not always the most appropriate tool for deriving closed-form expressions. We evaluate a Single-Input Single-Output (SISO) system performance in which the Large Intelligent Surface (LIS) acts as a scatterer. The direct link between the transmitting and receiving devices is negligible. Quantization phase errors are considered since the high precision configuration of the reflection phases is not always feasible. We derive exact closed-form expressions for the spectral efficiencies, outage probabilities, and average symbol error rate (SER) of different modulations. We assume a more comprehensive scenario in which $b$ bits are dedicated to the LIS elements' phase adjustment. From Monte Carlo simulations, we prove the excellent accuracy of our approach and investigate the behavior of power scaling law and power required to reach a specific capacity, depending on the number of reflecting elements. We show that the LIS with approximately fifty elements and four dedicated bits for phase quantization outperforms the conventional system performance without LIS.


Sign in / Sign up

Export Citation Format

Share Document