scholarly journals Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Minggang Dong ◽  
Ning Wang ◽  
Xiaohui Cheng ◽  
Chuanxian Jiang

Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE) for constrained optimization problems (COPs). More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Weiqin Ying ◽  
Bin Wu ◽  
Yu Wu ◽  
Yali Deng ◽  
Hainan Huang ◽  
...  

The constraint-handling methods using multiobjective techniques in evolutionary algorithms have drawn increasing attention from researchers. This paper proposes an efficient conical area differential evolution (CADE) algorithm, which employs biased decomposition and dual populations for constrained optimization by borrowing the idea of cone decomposition for multiobjective optimization. In this approach, a conical subpopulation and a feasible subpopulation are designed to search for the global feasible optimum, along the Pareto front and the feasible segment, respectively, in a cooperative way. In particular, the conical subpopulation aims to efficiently construct and utilize the Pareto front through a biased cone decomposition strategy and conical area indicator. Neighbors in the conical subpopulation are fully exploited to assist each other to find the global feasible optimum. Afterwards, the feasible subpopulation is ranked and updated according to a tolerance-based rule to heighten its diversity in the early stage of evolution. Experimental results on 24 benchmark test cases reveal that CADE is capable of resolving the constrained optimization problems more efficiently as well as producing solutions that are significantly competitive with other popular approaches.


Sign in / Sign up

Export Citation Format

Share Document