scholarly journals 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

2014 ◽  
Vol 22 (2) ◽  
pp. 109-124
Author(s):  
Michael S. Warren

We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (218) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (40963) particle cosmological simulations, accounting for 4×1020floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.

2010 ◽  
Vol 6 (S270) ◽  
pp. 389-396
Author(s):  
Junichiro Makino

AbstractI'll overview the past, present, and future of the GRAPE project, which started as the effort to design and develop specialized hardware for gravitational N-body problem. The current hardware, GRAPE-DR, has an architecture quite different from previous GRAPEs, in the sense that it is a collection of small, but programmable processors, while previous GRAPEs had hardwired pipelines. I'll discuss pros and cons of these two approaches, comparisons with other accelerators and future directions.


PAMM ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 33-34
Author(s):  
Odysseas Kosmas ◽  
Sigrid Leyendecker

Sign in / Sign up

Export Citation Format

Share Document