scholarly journals Stabilization of Positive Linear Discrete-Time Systems by Using a Brauer’s Theorem

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Begoña Cantó ◽  
Rafael Cantó ◽  
Snezhana Kostova

The stabilization problem of positive linear discrete-time systems (PLDS) by linear state feedback is considered. A method based on a Brauer’s theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO) and for multi-input multioutput (MIMO) cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.

2005 ◽  
Vol 2005 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Tadeusz Kaczorek

The realization problem for positive single-input single-output discrete-time systems with one time delay is formulated and solved. Necessary and sufficient conditions for the solvability of the realization problem are established. A procedure for computation of a minimal positive realization of a proper rational function is presented and illustrated by an example.


Author(s):  
KACZOREK TADEUSZ

The realization problem for positive, continuous-time linear single-input, single-output systems with delays is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for computation of positive minimal realizations is presented and illustrated by an example.


2012 ◽  
Vol 22 (4) ◽  
pp. 451-465 ◽  
Author(s):  
Tadeusz Kaczorek

A new modified state variable diagram method is proposed for determination of positive realizations with reduced numbers of delays and without delays of linear discrete-time systems for a given transfer function. Sufficient conditions for the existence of the positive realizations of given proper transfer function are established. It is shown that there exists a positive realization with reduced numbers of delays if there exists a positive realization without delays but with greater dimension. The proposed methods are demonstrated on a numerical example.


1996 ◽  
Vol 118 (2) ◽  
pp. 350-353 ◽  
Author(s):  
M. A. Hopkins ◽  
H. F. VanLandingham

This paper extends to multi-input multi-output (MIMO) systems a nonlinear method of simultaneous parameter and state estimation that appeared in the ASME JDSM&C (September, 1994), for single-input single-output (SISO) systems. The method is called pseudo-linear identification (PLID), and applies to stochastic linear time-invariant discrete-time systems. No assumptions are required about pole or zero locations; nor about relative degree, except that the system transfer functions must be strictly proper. In the earlier paper, proofs of optimality and convergence were given. Extensions of those proofs to the MIMO case are also given here.


Sign in / Sign up

Export Citation Format

Share Document