scholarly journals Service Station Evaluation Problem in Catering Service of High-Speed Railway: A Fuzzy QFD Approach Based on Evidence Theory

2015 ◽  
Vol 2015 ◽  
pp. 1-25 ◽  
Author(s):  
Xin Wu ◽  
Lei Nie ◽  
Meng Xu

Catering Service of High-Speed Railway (CSHR) starts at suppliers, includes distribution centers and service stations in cities, and ends at cabinets in high-speed trains. In Distribution System Design (DSD) Problem for CSHR, it is critical to evaluate the alternatives of service stations, which is termed as Service Station Evaluation Problem in Catering Service of High-speed Railway (SSEP-CSHR). As a preparation work for DSD, SSEP-CSHR needs to be solved without detailed information and being accompanied with uncertainty. Fuzzy Quality Function Deployment (F-QFD) has been given in the literatures to deal with vagueness in Facility Location Evaluation (FLE). However, SSEP-CSHR that includes identifying and evaluating stations requires not only dealing with the vague nature of assessments but also confirming them. Based on evidence theory, this paper introduces the framework to give the truth of proposition “x is A.” Then it is incorporated into a two-phase F-QFD with an approximate reasoning to enable the truth of the decisions to be measured. A case study that refers to 85 alternative stations on Chinese high-speed railway will be carried out to verify the proposed method. Analysis shows that the proposed evaluation method enhances scientific credibility of FLE and allows decision makers to express how much is known.

2020 ◽  
Vol 12 (13) ◽  
pp. 5447
Author(s):  
Dezhi Zhang ◽  
Shuxin Yang ◽  
Shuangyan Li ◽  
Jiajun Fan ◽  
Bin Ji

Sustainable distribution network design for the maintenance components of electric multiple units (EMUs) is critical to reduce the problem of unreasonable resource allocation and capital occupation of high-speed railway (HSR) operations. Motivated by the above analysis, this study investigates the integrated optimization of the location and inventory of EMU maintenance component distributions. Aiming to improve the sustainable operation for high-speed railway, we proposed a corresponding nonlinear mixed-integer programming model to determine the location of the distribution center (DC) for EMU maintenance component delivery, inventory control strategy, and corresponding service level. The above optimization model is solved by an adaptive improved genetic algorithm. The proposed model and algorithm are applied to a real-world case study on China’s EMU maintenance components. The findings show that a higher service level is not better to achieve the lower total cost in the maintenance component distribution network. The ratios of transportation modes are significant to balance the service level and total cost of the EMU distribution network. Furthermore, the unit out-of-stock cost and the service level both show great impacts on the total costs of the EMU distribution system. Finally, there exists an optimal ratio of different transport modes, which ensures the least total cost of the EMU distribution system.


2017 ◽  
Vol 53 (6) ◽  
pp. 5229-5238 ◽  
Author(s):  
Shu Zhang ◽  
Zhengyou He ◽  
Wei-Jen Lee ◽  
Ruikun Mai

2012 ◽  
Vol 132 (10) ◽  
pp. 673-676
Author(s):  
Takaharu TAKESHITA ◽  
Wataru KITAGAWA ◽  
Inami ASAI ◽  
Hidehiko NAKAZAWA ◽  
Yusuke FURUHASHI

Sign in / Sign up

Export Citation Format

Share Document