Voltage sag profiles based fault location in high speed railway distribution system

Author(s):  
Shu Zhang ◽  
Zhengyou He ◽  
Wei-jen Lee ◽  
Ruikun Mai
2017 ◽  
Vol 53 (6) ◽  
pp. 5229-5238 ◽  
Author(s):  
Shu Zhang ◽  
Zhengyou He ◽  
Wei-Jen Lee ◽  
Ruikun Mai

2015 ◽  
Vol 2015 ◽  
pp. 1-25 ◽  
Author(s):  
Xin Wu ◽  
Lei Nie ◽  
Meng Xu

Catering Service of High-Speed Railway (CSHR) starts at suppliers, includes distribution centers and service stations in cities, and ends at cabinets in high-speed trains. In Distribution System Design (DSD) Problem for CSHR, it is critical to evaluate the alternatives of service stations, which is termed as Service Station Evaluation Problem in Catering Service of High-speed Railway (SSEP-CSHR). As a preparation work for DSD, SSEP-CSHR needs to be solved without detailed information and being accompanied with uncertainty. Fuzzy Quality Function Deployment (F-QFD) has been given in the literatures to deal with vagueness in Facility Location Evaluation (FLE). However, SSEP-CSHR that includes identifying and evaluating stations requires not only dealing with the vague nature of assessments but also confirming them. Based on evidence theory, this paper introduces the framework to give the truth of proposition “x is A.” Then it is incorporated into a two-phase F-QFD with an approximate reasoning to enable the truth of the decisions to be measured. A case study that refers to 85 alternative stations on Chinese high-speed railway will be carried out to verify the proposed method. Analysis shows that the proposed evaluation method enhances scientific credibility of FLE and allows decision makers to express how much is known.


2014 ◽  
Vol 492 ◽  
pp. 201-211
Author(s):  
S. Songsiri ◽  
S. Sirisumrannukul

This paper proposes a practical mitigation solution to the voltage sag problem by resonant grounding for a 22-kV distribution system of Provincial Electricity Authority (PEA) at the Patumthani 1 substation in Pathumthani province in Thailand. A computer simulation by ATP-EMTP was carried out to investigate the voltage sag impact at the low voltage side of the delta/wye distribution transformer connected at a fault location in the existing solidly grounded system and proposed resonant grounded system. The results indicate that the proposed resonant grounding can help all customers connected at the same bus survive from voltage sag problems and also keep the customers on the faulty feeder connected to the system being continuously supplied for single-to-ground faults. To evaluate the benefits of the resonant grounding, the different voltage-tolerance curves are proposed by Information Technology Institute Council (ITIC) curve and laboratory testing of Personel Computer (PC) curve, Programable Logig Coltroller (PLC) and Adjustable Speed Drive (ASD). The saving from the cost of customer interruption and voltage sag is calculated comparing between the existing solid grounding and the proposed resonant grounding with different voltage-tolerance curves


2020 ◽  
Vol 12 (13) ◽  
pp. 5447
Author(s):  
Dezhi Zhang ◽  
Shuxin Yang ◽  
Shuangyan Li ◽  
Jiajun Fan ◽  
Bin Ji

Sustainable distribution network design for the maintenance components of electric multiple units (EMUs) is critical to reduce the problem of unreasonable resource allocation and capital occupation of high-speed railway (HSR) operations. Motivated by the above analysis, this study investigates the integrated optimization of the location and inventory of EMU maintenance component distributions. Aiming to improve the sustainable operation for high-speed railway, we proposed a corresponding nonlinear mixed-integer programming model to determine the location of the distribution center (DC) for EMU maintenance component delivery, inventory control strategy, and corresponding service level. The above optimization model is solved by an adaptive improved genetic algorithm. The proposed model and algorithm are applied to a real-world case study on China’s EMU maintenance components. The findings show that a higher service level is not better to achieve the lower total cost in the maintenance component distribution network. The ratios of transportation modes are significant to balance the service level and total cost of the EMU distribution network. Furthermore, the unit out-of-stock cost and the service level both show great impacts on the total costs of the EMU distribution system. Finally, there exists an optimal ratio of different transport modes, which ensures the least total cost of the EMU distribution system.


2017 ◽  
Vol 12 (4) ◽  
pp. 519-526 ◽  
Author(s):  
Sophi Shilpa Gururajapathy ◽  
Hazlie Mokhlis ◽  
Hazlee Azil Bin Illias ◽  
Lilik Jamilatul Awalin

2013 ◽  
Vol 787 ◽  
pp. 902-908 ◽  
Author(s):  
Xin Du ◽  
Min Fang Peng ◽  
Hong Mei Zeng ◽  
Liang Zhu ◽  
Hong Wei Che ◽  
...  

A fault location method based on correlation coefficient was proposed in the paper for the distribution system with distributed generation (DG). At first, by acquiring the Thevenin equivalent parameters of each DG to establish simulation model of the actual distribution network. Then voltage sag feature vectors of each bus would be obtained by simulating short-circuit fault at the location of each bus, respectively. Afterwards, by calculating and analyzing the correlation coefficient between each bus and the actual fault node,, suspicious fault sections can be determined. Finally, the fault section was identified by utilizing the associated node of every suspicious fault section .The method could reduce the fault search range obviously, without a massive requirement of measuring devices, and the required data can be obtained easily. Simulation results of a 10kV distribution network with DG showed that the proposed method was accuracy and effective.


2012 ◽  
Vol 433-440 ◽  
pp. 3974-3979 ◽  
Author(s):  
Somchai Songsiri ◽  
Sompon Sirisumrannukul

This paper proposes a practical mitigation solution to the voltage sag problem by resonant grounding for a 22-kV distribution system of Provincial Electricity Authority (PEA). The simulation is carried out to investigate the voltage sag impact at the low voltage side of the delta/wye distribution transformer connected at the fault location in the existing solidly grounded system and proposed resonant grounded system by ATP-EMTP simulation. The results indicate that the proposed resonant grounding can help all customers connected at the same bus survive from voltage sag problems and also keep the customers on the faulty feeder connected to the system being continuously supplied. In addition, the distribution system with resonant ground lengthens the useful lifetime of the upstream circuit breaker of the feeder as its number of operations is significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document