scholarly journals Fuzzy Adaptive Prescribed Performance Control for Uncertain Horizontal Platform System with Unknown Control Gain

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Wei Xiang ◽  
Yeguo Sun ◽  
Chunzhi Yang

This paper proposes a fuzzy adaptive control method for uncertain horizontal platform system with unknown control gain, which is capable of guaranteeing the prescribed performance bounds. An error transformation is introduced to transform the original constrained system into an equivalent unconstrained one. Then, based on the error transformation technique and the predefined performance technique, a fuzzy adaptive controller is designed for the unconstrained system. It is shown that all the variables of the resulting closed-loop system are bounded. Finally, an illustrative example is given to demonstrate the effectiveness and usefulness of the proposed method.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Xiang ◽  
Ning Li ◽  
Yeguo Sun

This paper proposes a fuzzy adaptive prescribed performance control scheme for a class of uncertain chaotic systems with unknown control gains and unknown dead-zone inputs. Firstly, an error transformation is introduced to transform the original constrained system into an equivalent unconstrained one. Then, based on the error transformation technique and the predefined performance technique, a fuzzy adaptive feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, an illustrative example is given to demonstrate the effectiveness and usefulness of the proposed technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yeguo Sun ◽  
Heng Liu

This paper presents a fuzzy adaptive control method for MIMO uncertain chaotic systems in nonstrict feedback form, which is capable of guaranteeing the prescribed performance bounds. For the prescribed performance bounds, we mean that the tracking error should converge to a predefined arbitrarily small set, with convergence rate no more than a prescribed value. A novel output error transformation is introduced to transform the original constrained system into an equivalent unconstrained one, and it is proved that the stabilization of the unconstrained system is sufficient to solve the problem. Based on the error transformation technique, a fuzzy adaptive controller is designed for the unconstrained system. For updating the parameters of the fuzzy logic systems, a proportional-integral adaptation law is proposed. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed results.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xin Ma ◽  
Fang Zhu

For a class of uncertain nonlinear chaotic systems with unknown control gain signs and saturated input, by means of Nussbaum function, a scheme of finite-time prescribed performance synchronization control is proposed. Here, Nussbaum function is used to eliminate the influence of unknown control gain signs, and fuzzy logic systems are used to estimate unknown functions. Lyapunov theory is used to prove that all synchronization errors converge to a predefined small performance range under the designed control method. Finally, simulation results are provided to illustrate the feasibility of the proposed method.


2004 ◽  
Vol 126 (4) ◽  
pp. 916-920 ◽  
Author(s):  
Huadong Chen ◽  
Ping Jiang

An adaptive iterative learning control approach is proposed for a class of single-input single-output uncertain nonlinear systems with completely unknown control gain. Unlike the ordinary iterative learning controls that require some preconditions on the learning gain to stabilize the dynamic systems, the adaptive iterative learning control achieves the convergence through a learning gain in a Nussbaum-type function for the unknown control gain estimation. This paper shows that all tracking errors along a desired trajectory in a finite time interval can converge into any given precision through repetitive tracking. Simulations are carried out to show the validity of the proposed control method.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012050
Author(s):  
Yu Yang ◽  
Xing Jin

Abstract In the technology of hydraulic lifting system, it is not only necessary to ensure that the displacement and velocity accuracy of each hoist reach a certain value, but also to ensure that under the control of load balance to make each hoist smooth lift. In the conventional method, the PID control method can realize the synchronization of the function. However, the system cannot be controlled and adjusted in real time during the control parameter period, resulting in instability and uncertainty of the system. Aiming at this problem, this paper adds the fuzzy adaptive controller to carry out the master-slave control of the system. AMESim and MATLAB co-simulation were used to model the overall model of the hydraulic system. At the same time, the pressure compensator and variable throttle port model in the hydraulic reservoir were selected to build. The pressure compensator is used to keep the pressure difference of the throttle orifice constant, so as to complete the control and design of the hydraulic lifting system. Finally, the simulation results obtained not only can effectively improve the instability of the hydraulic lifting process, but also greatly improve the operation speed of the system.


Sign in / Sign up

Export Citation Format

Share Document