scholarly journals Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
C. Di Filippo ◽  
B. Ferraro ◽  
R. Maisto ◽  
M. C. Trotta ◽  
N. Di Carluccio ◽  
...  

This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy)benzofuroxane (BF-5m) on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP) in isolated, high glucose (33.3 mM D-glucose) perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose). The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p.) prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM). Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP.

1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Filippo Zilio ◽  
Simone Muraglia ◽  
Roberto Bonmassari

Abstract Background A ‘catecholamine storm’ in a case of pheochromocytoma can lead to a transient left ventricular dysfunction similar to Takotsubo cardiomyopathy. A cardiogenic shock can thus develop, with high left ventricular end-diastolic pressure and a reduction in coronary perfusion pressure. This scenario can ultimately lead to a cardiac arrest, in which unloading the left ventricle with a peripheral left ventricular assist device (Impella®) could help in achieving the return of spontaneous circulation (ROSC). Case summary A patient affected by Takotsubo cardiomyopathy caused by a pheochromocytoma presented with cardiogenic shock that finally evolved into refractory cardiac arrest. Cardiopulmonary resuscitation was performed but ROSC was achieved only after Impella® placement. Discussion In the clinical scenario of Takotsubo cardiomyopathy due to pheochromocytoma, when cardiogenic shock develops treatment is difficult because exogenous catecholamines, required to maintain organ perfusion, could exacerbate hypertension and deteriorate the cardiomyopathy. Moreover, as the coronary perfusion pressure is critically reduced, refractory cardiac arrest could develop. Although veno-arterial extra-corporeal membrane oxygenation (va-ECMO) has been advocated as the treatment of choice for in-hospital refractory cardiac arrest, in the presence of left ventricular overload a device like Impella®, which carries fewer complications as compared to ECMO, could be effective in obtaining the ROSC by unloading the left ventricle.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Norman A Paradis ◽  
Karen L Moodie ◽  
Christopher L Kaufman ◽  
Joshua W Lampe

Introduction: Guidelines for treatment of cardiac arrest recommend minimizing interruptions in chest compressions based on research indicating that interruptions compromise coronary perfusion pressure (CPP) and blood flow and reducing the likelihood of successful defibrillation. We investigated the dynamics of CPP before, during, and after compression interruptions and how they change over time. Methods: CPR was performed on domestic swine (~30 Kg) using standard physiological monitoring. Blood flow was measured in the abdominal aorta (AAo), the inferior vena cava, the right common carotid and external jugular. Ventricular fibrillation (VF) was electrically induced. Mechanical chest compressions (CC) were started after four minutes of VF. CC were delivered at a rate of 100 compressions per minute (cpm) and at a depth of 2” for a total of 12 min. CPP was calculated as the difference between aortic and right atrial pressure at end-diastole per Utstein guidelines. CPP was determined for 5 compressions prior to the interruption, every 2 seconds during the CC interruption, and for 7 compressions after the interruption. Per protocol, 12 interruptions occurred at randomized time points. Results: Across 12 minutes of CPR, averaged CPP prior to interruption was significantly greater than the averaged CPP after the interruption (22.4±1.0 vs. 15.5±0.73 mmHg). As CPR continued throughout the 12 minutes, CPP during compressions decreased (First 6 min = 24.1±1.4 vs. Last 6 min = 20.1±1.3 mmHg, p=0.05), but the effect of interruptions remained constant resulting in a 20% drop in CPP for every 2 seconds irrespective of the prior CPP. The increase (slope) of CPP after resumption of compressions was significantly reduced over time (First 6 min = 1.47±0.18 vs. Last 6 min = 0.82±0.13 mmHg/compression). Conclusions: Chest compression interruptions have a detrimental effect on coronary perfusion and blood flow. The magnitude of this effect increases over time as a resuscitation effort continues. These data confirm the importance of providing uninterrupted CPR particularly in long duration resuscitations.


1994 ◽  
Vol 266 (3) ◽  
pp. H1233-H1241 ◽  
Author(s):  
L. S. Mihailescu ◽  
F. L. Abel

This study presents an improved method for the measurement of intramyocardial pressure (IMP) using the servo-nulling mechanism. Glass micropipettes (20-24 microns OD) were used as transducers, coated to increase their mechanical resistance to breakage, and placed inside the left ventricular wall with a micropipette holder and manipulator. IMP was measured at the base of the left ventricle in working and nonworking isolated cat hearts that were perfused with Krebs-Henseleit buffer. In working hearts a transmural gradient of systolic IMP oriented from endocardium toward the epicardium was found; the endocardial values for systolic IMP were slightly higher than systolic left ventricular pressure (LVP), by 11-18%. Increases in afterload induced increases in IMP, without changing the systolic IMP-to-LVP ratio. In nonworking hearts with drained left ventricles, the systolic transmural gradient for IMP described for working hearts persisted, but at lower values, and was directly dependent on coronary perfusion pressure. Systolic IMP-to-LVP ratios were always > 1. The diastolic IMP of both working and nonworking hearts exhibited irregular transmural gradients. Our results support the view that generated systolic IMP is largely independent of LVP development.


Sign in / Sign up

Export Citation Format

Share Document