scholarly journals An Enhanced OFDM Resource Allocation Algorithm in C-RAN Based 5G Public Safety Network

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Feng ◽  
Wenjing Li ◽  
Peng Yu ◽  
Xuesong Qiu

Public Safety Network (PSN) is the network for critical communication when disaster occurs. As a key technology in 5G, Cloud-Radio Access Network (C-RAN) can play an important role in PSN instead of LTE-based RAN. This paper firstly introduces C-RAN based PSN architecture and models the OFDM resource allocation problem in C-RAN based PSN as an integer quadratic programming, which allows the trade-off between expected bitrates and allocating fairness of PSN Service User (PSU). However, C-RAN based PSN needs to improve the efficiency of allocating algorithm because of a mass of PSU-RRH associations when disaster occurs. To deal with it, the resources allocating problem with integer variables is relaxed into one with continuous variables in the first step and an algorithm based on Generalized Bender’s Decomposition (GBD) is proposed to solve it. Then we use Feasible Pump (FP) method to get a feasible integer solution on the original OFDM resources allocation problem. The final experiments show the total throughput achieved by C-RAN based PSN is at most higher by 19.17% than the LTE-based one. And the average computational time of the proposed GBD and FP algorithm is at most lower than Barrier by 51.5% and GBD with no relaxation by 30.1%, respectively.

Sign in / Sign up

Export Citation Format

Share Document