delay sensitive
Recently Published Documents


TOTAL DOCUMENTS

801
(FIVE YEARS 223)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Tao Zheng ◽  
Jian Wan ◽  
Jilin Zhang ◽  
Congfeng Jiang

AbstractEdge computing is a new paradigm for providing cloud computing capacities at the edge of network near mobile users. It offers an effective solution to help mobile devices with computation-intensive and delay-sensitive tasks. However, the edge of network presents a dynamic environment with large number of devices, high mobility of users, heterogeneous applications and intermittent traffic. In such environment, edge computing often suffers from unbalance resource allocation, which leads to task failure and affects system performance. To tackle this problem, we proposed a deep reinforcement learning(DRL)-based workload scheduling approach with the goal of balancing the workload, reducing the service time and the failed task rate. Meanwhile, We adopt Deep-Q-Network(DQN) algorithms to solve the complexity and high dimension of workload scheduling problem. Simulation results show that our proposed approach achieves the best performance in aspects of service time, virtual machine(VM) utilization, and failed tasks rate compared with other approaches. Our DRL-based approach can provide an efficient solution to the workload scheduling problem in edge computing.


Author(s):  
Mohit Mathur ◽  
◽  
Mamta Madan ◽  
Mohit Chandra Saxena ◽  
◽  
...  

Emerging technologies like IoT (Internet of Things) and wearable devices like Smart Glass, Smart watch, Smart Bracelet and Smart Plaster produce delay sensitive traffic. Cloud computing services are emerging as supportive technologies by providing resources. Most services like IoT require minimum delay which is still an area of research. This paper is an effort towards the minimization of delay in delivering cloud traffic, by geographically localizing the cloud traffic through establishment of Cloud mini data centers. The anticipated architecture suggests a software defined network supported mini data centers connected together. The paper also suggests the use of segment routing for stitching the transport paths between data centers through Software defined Network Controllers.


Author(s):  
Yong Xiao ◽  
Ling Wei ◽  
Junhao Feng ◽  
Wang En

Edge computing has emerged for meeting the ever-increasing computation demands from delay-sensitive Internet of Things (IoT) applications. However, the computing capability of an edge device, including a computing-enabled end user and an edge server, is insufficient to support massive amounts of tasks generated from IoT applications. In this paper, we aim to propose a two-tier end-edge collaborative computation offloading policy to support as much as possible computation-intensive tasks while making the edge computing system strongly stable. We formulate the two-tier end-edge collaborative offloading problem with the objective of minimizing the task processing and offloading cost constrained to the stability of queue lengths of end users and edge servers. We perform analysis of the Lyapunov drift-plus-penalty properties of the problem. Then, a cost-aware computation offloading (CACO) algorithm is proposed to find out optimal two-tier offloading decisions so as to minimize the cost while making the edge computing system stable. Our simulation results show that the proposed CACO outperforms the benchmarked algorithms, especially under various number of end users and edge servers.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 37
Author(s):  
Tariq Qayyum ◽  
Zouheir Trabelsi ◽  
Asad Malik ◽  
Kadhim Hayawi

Unmanned aerial vehicles (UAVs) play an important role in facilitating data collection in remote areas due to their remote mobility. The collected data require processing close to the end-user to support delay-sensitive applications. In this paper, we proposed a data collection scheme and scheduling framework for smart farms. We categorized the proposed model into two phases: data collection and data scheduling. In the data collection phase, the IoT sensors are deployed randomly to form a cluster based on their RSSI. The UAV calculates an optimum trajectory in order to gather data from all clusters. The UAV offloads the data to the nearest base station. In the second phase, the BS finds the optimally available fog node based on efficiency, response rate, and availability to send workload for processing. The proposed framework is implemented in OMNeT++ and compared with existing work in terms of energy and network delay.


2021 ◽  
Author(s):  
Ximing Wu ◽  
Lei Zhang ◽  
Yingfeng Wu ◽  
Haobin Zhou ◽  
Laizhong Cui

Author(s):  
Geng Li ◽  
Huiling Liu ◽  
Gaojian Huang ◽  
Xingwang Li ◽  
Bichu Raj ◽  
...  

AbstractThe future sixth generation (6G) is going to face the significant challenges of massive connections and green communication. Recently, reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) have been proposed as two key technologies to solve the above problems. Motivated by this fact, we consider a downlink RIS-aided NOMA system, where the source aims to communicate with the two NOMA users via RIS. Considering future network supporting real-time service, we investigate the system performance with the view of effective capacity (EC), which is an important evaluation metric of delay sensitive systems. Specifically, we derive the analytical expressions of the EC of the near and far users. To obtain more useful insights, we deduce the analytical approximation expressions of the EC in the low signal-to-noise-ratio approximation by utilizing Taylor expansion. Moreover, we provide the results of orthogonal multiple access (OMA) for the purpose of comparison. It is found that (1) The number of RIS components and the transmission power of the source have important effects on the performance of the considered system; (2) Compared with OMA, NOMA system has higher EC due to the short transmission time.


Sign in / Sign up

Export Citation Format

Share Document