scholarly journals Revocable Key-Aggregate Cryptosystem for Data Sharing in Cloud

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qingqing Gan ◽  
Xiaoming Wang ◽  
Daini Wu

With the rapid development of network and storage technology, cloud storage has become a new service mode, while data sharing and user revocation are important functions in the cloud storage. Therefore, according to the characteristics of cloud storage, a revocable key-aggregate encryption scheme is put forward based on subset-cover framework. The proposed scheme not only has the key-aggregate characteristics, which greatly simplifies the user’s key management, but also can revoke user access permissions, realizing the flexible and effective access control. When user revocation occurs, it allows cloud server to update the ciphertext so that revoked users can not have access to the new ciphertext, while nonrevoked users do not need to update their private keys. In addition, a verification mechanism is provided in the proposed scheme, which can verify the updated ciphertext and ensure that the user revocation is performed correctly. Compared with the existing schemes, this scheme can not only reduce the cost of key management and storage, but also realize user revocation and achieve user’s access control efficiently. Finally, the proposed scheme can be proved to be selective chosen-plaintext security in the standard model.

Author(s):  
Mrs. B. Sathyabama ◽  
C. SureshKumar ◽  
K. Kesau ◽  
R. Karthikeyan

The paper proposes a new decentralized access control scheme for secure data storage in clouds that supports anonymous authentication. In the proposed scheme, the cloud verifies the authenticity of the series without knowing the user's identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation. Moreover, our authentication and access control scheme are decentralized and robust, unlike other access control schemes designed for clouds which are centralized. The communication, computation, and storage overheads are comparable to centralized approaches.


Author(s):  
Marwan Majeed Nayyef ◽  
Ali Makki Sagheer

With the rapid development of cloud computing, which has become a key aspect to maintain the security of user information that may be highly confidential and maintained during transport and storage process. The reliance on traditional algorithms that are used to encrypt data are not secure enough because we cannot process the data only after decrypt. In this article is proposed the use of homomorphic encryption to solve this problem because it can deal with encrypted data without the decryption, which can lead to ensuring confidentiality of the data. A number of public-key algorithms are explained, which is based on the concept of homomorphic encryption. In this article an algorithm is proposed based on HE and it is similar to Menesez-EC but with one digit as a secret key according to its advantage, whereby reducing the cost of communication, and storage and provides high processing speed when compared with other algorithms. This algorithm provides enough security for a bank's customer information and then compared with ECC, each of RSA and Piallier algorithms as evaluated.


2014 ◽  
Vol 496-500 ◽  
pp. 1905-1908
Author(s):  
Hong Xia Mao

Cloud storage has so many advantages that it has been an ideal way to store data. So, the technical questions of security and reliability should be researched. Access control and encryption are used for security of data storage. Redundancy technology which can improve the data reliability in cloud storage includes replication technology and erasure code. Under the specific experimental environment, the erasure code has an absolute advantage in fault tolerance and storage capacity.


2014 ◽  
Vol 571-572 ◽  
pp. 79-89
Author(s):  
Ting Zhong ◽  
You Peng Sun ◽  
Qiao Liu

In the cloud storage system, the server is no longer trusted, which is different from the traditional storage system. Therefore, it is necessary for data owners to encrypt data before outsourcing it for sharing. Simultaneously, the enforcement of access policies and support of policies updates becomes one of the most challenging issues. Ciphertext-policy attribute-based encryption (CP-ABE) is an appropriate solution to this issue. However, it comes with a new obstacle which is the attribute and user revocation. In this paper, we propose a fine-grained access control scheme with efficient revocation based on CP-ABE approach. In the proposed scheme, we not only realize an efficient and immediate revocation, but also eliminate some burden of computational overhead. The analysis results indicate that the proposed scheme is efficient and secure for access control in cloud storage systems.


2014 ◽  
Vol 556-562 ◽  
pp. 6179-6183
Author(s):  
Zhi Gang Chai ◽  
Ming Zhao ◽  
Xiao Yu

With the rapid development of information technology, the extensive use of cloud computing promotes technological change in the IT industry. The use of cloud storage industry is also one solution to the problem of an amount of data storing, which is traditionally large, and unimaginably redundant. The use of cloud computing in the storage system connects the user's data with network clients via the Internet. That is to say, it not only solves a lot of data storage space requirements in request, but also greatly reduces the cost of the storage system. But in the application of cloud storage, there are also many problems to be solved, even to some extent which has hindered the development of cloud storage. Among these issues, the most concerning one is cloud storage security. The following passages discuss the problem and propose a solution to it.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Hongmin Gao ◽  
Zhaofeng Ma ◽  
Shoushan Luo ◽  
Yanping Xu ◽  
Zheng Wu

Privacy protection and open sharing are the core of data governance in the AI-driven era. A common data-sharing management platform is indispensable in the existing data-sharing solutions, and users upload their data to the cloud server for storage and dissemination. However, from the moment users upload the data to the server, they will lose absolute ownership of their data, and security and privacy will become a critical issue. Although data encryption and access control are considered up-and-coming technologies in protecting personal data security on the cloud server, they alleviate this problem to a certain extent. However, it still depends too much on a third-party organization’s credibility, the Cloud Service Provider (CSP). In this paper, we combined blockchain, ciphertext-policy attribute-based encryption (CP-ABE), and InterPlanetary File System (IPFS) to address this problem to propose a blockchain-based security sharing scheme for personal data named BSSPD. In this user-centric scheme, the data owner encrypts the sharing data and stores it on IPFS, which maximizes the scheme’s decentralization. The address and the decryption key of the shared data will be encrypted with CP-ABE according to the specific access policy, and the data owner uses blockchain to publish his data-related information and distribute keys for data users. Only the data user whose attributes meet the access policy can download and decrypt the data. The data owner has fine-grained access control over his data, and BSSPD supports an attribute-level revocation of a specific data user without affecting others. To further protect the data user’s privacy, the ciphertext keyword search is used when retrieving data. We analyzed the security of the BBSPD and simulated our scheme on the EOS blockchain, which proved that our scheme is feasible. Meanwhile, we provided a thorough analysis of the storage and computing overhead, which proved that BSSPD has a good performance.


Sign in / Sign up

Export Citation Format

Share Document