scholarly journals Improving Daytime Planetary Boundary Layer Height Determination from CALIOP: Validation Based on Ground-Based Lidar Station

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Zhao Liu ◽  
Augustin Mortier ◽  
Zhengqiang Li ◽  
Weizhen Hou ◽  
Philippe Goloub ◽  
...  

An integrated algorithm by combining the advantages of the wavelet covariance method and the improved maximum variance method was developed to determine the planetary boundary layer height (PBLH) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and an aerosol fraction threshold was applied to the integrated algorithm considering the applicability of the two methods. We compared the CALIOP retrieval with the measurements of PBLH derived from nine years of ground-based Lidar synchronous observations located in Lille, north of France. The results indicate that a good correlation (R≥0.79) exists between the PBLHs derived from CALIOP and ground-based Lidar under clear sky conditions. The mean absolute differences of PBLHs are, respectively, of 206 m and 106 m before and after the removal of the aloft aerosol layer. The results under cloudy sky conditions show a lower agreement (R=0.48) in regard of the comparisons performed under clear sky conditions. Besides, the spatial correlation of PBLHs decreases with the increasing spatial distance between CALIOP footprint and Lille observation platform. Based on the above analysis, the PBLHs can be effectively derived by the integrated algorithm under clear sky conditions, while larger mean absolute difference (i.e., 527 m) exists under cloudy sky conditions.

2021 ◽  
Vol 13 (8) ◽  
pp. 1496
Author(s):  
Man-Hae Kim ◽  
Huidong Yeo ◽  
Soojin Park ◽  
Do-Hyeon Park ◽  
Ali Omar ◽  
...  

Coincident profiles from the space-borne and ground-based lidar measurements provide a unique opportunity to estimate the planetary boundary layer height (PBLH). In this study, PBLHs derived from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were assessed by comparing them with those obtained from the ground-based lidar at Seoul National University (SNU) in Korea for both day and night from 2006 to 2019, and sounding data. CALIOP-derived PBLHs using wavelet covariance transform (WCT) are generally higher than those derived from the SNU lidar for both day and night. The difference in PBLH tends to increase as the signal-to-noise ratio for CALIOP decreases. The difference also increases as aerosol optical depth increases, implying that the PBLH estimated from CALIOP could be higher than that determined from the SNU lidar because of the signal attenuation within the aerosol layer under optically thick aerosol layer conditions. The higher PBLH for CALIOP in this study is mainly attributed to multiple aerosol layers. After eliminating multilayer cases, the PBLHs estimated from both the lidars showed significantly improved agreement: a mean difference of 0.09 km (R = 0.81) for daytime and 0.25 km (R = 0.51) for nighttime. The results from this study suggest that PBL detection using CALIOP is reliable for daytime if multilayer cases are removed. For nighttime, PBLHs derived from the SNU lidar and CALIOP showed a relatively large difference in frequency distribution compared with sounding data. It suggests that further investigations are needed for nighttime PBLHs, such as investigations about discriminating the residual layer and the difference between lidar-derived PBLH based on the aerosol layer and thermally derived PBLH from radiosonde data for the stable boundary layer during the nighttime.


2016 ◽  
Vol 16 (15) ◽  
pp. 9951-9963 ◽  
Author(s):  
Wanchun Zhang ◽  
Jianping Guo ◽  
Yucong Miao ◽  
Huan Liu ◽  
Yong Zhang ◽  
...  

Abstract. Accurate estimation of planetary boundary layer height (PBLH) is key to air quality prediction, weather forecast, and assessment of regional climate change. The PBLH retrieval from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is expected to complement ground-based measurements due to the broad spatial coverage of satellites. In this study, CALIOP PBLHs are derived from combination of Haar wavelet and maximum variance techniques, and are further validated against PBLHs estimated from ground-based lidar at Beijing and Jinhua. Correlation coefficients between PBLHs from ground- and satellite-based lidars are 0.59 at Beijing and 0.65 at Jinhua. Also, the PBLH climatology from CALIOP and radiosonde are compiled over China during the period from 2011 to 2014. Maximum CALIOP-derived PBLH can be seen in summer as compared to lower values in other seasons. Three matchup scenarios are proposed according to the position of each radiosonde site relative to its closest CALIPSO ground tracks. For each scenario, intercomparisons were performed between CALIOP- and radiosonde-derived PBLHs, and scenario 2 is found to be better than other scenarios using difference as the criteria. In early summer afternoon over 70 % of the total radiosonde sites have PBLH values ranging from 1.6 to 2.0 km. Overall, CALIOP-derived PBLHs are well consistent with radiosonde-derived PBLHs. To our knowledge, this study is the first intercomparison of PBLH on a large scale using the radiosonde network of China, shedding important light on the data quality of initial CALIOP-derived PBLH results.


2016 ◽  
Author(s):  
Wanchun Zhang ◽  
Jianping Guo ◽  
Yucong Miao ◽  
Huan Liu ◽  
Zhengqiang Li ◽  
...  

Abstract. The accurate estimation of boundary layer height is key to air quality prediction, weather forecast and so on. The planetary boundary layer height (PBLH) retrieval from CALIOP is expected to complement the ground-based site measurement due to its large spatial coverage. To such end, we estimated PBLHs from CALIOP, using the combination of Haar wavelet and maximum variance techniques, which was validated against PBLHs from ground-based lidar at Beijing and Jinhua. Comparison between ground-based and satellite lidar shows good agreement with a correlation coefficient of 0.59 in Beijing and 0.65 in Jinhua. The PBLH climatology from CALIOP was compiled over China during 2011 to 2014. Maximum PBLH was seen in summer as compared to lower value in other seasons. Prior to intercomparisons between CALIOP- and radiosonde-derived PBLHs, three matchup scenarios were proposed according to the position of each radiosonde site relative to its closest CALIPSO ground tracks. The CALIOP observations belonging to Scenario 2 were found to be better for comparison with radiosonde-derived PBLH, owing to smaller difference between them. The PBLHs at early summer afternoon range from 1.6 km to 2.0 km, accounting for over 70 % of the total radiosonde sites. Overall, CALIOP-derived PBLHs seem to be well consistent with radiosonde-derived PBLHs. To our knowledge, this study is the first intercomparison study of PBLH over large scale using the radiosonde network of China, shedding important light on the data quality of initial CALIOP-derived PBLH results.


2010 ◽  
Vol 23 (21) ◽  
pp. 5790-5809 ◽  
Author(s):  
Shuyan Liu ◽  
Xin-Zhong Liang

Abstract An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.


2014 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fabio J. da Silva Lopes ◽  
Juan L. Guerrero-Rascado ◽  
Maria José Granados-Muñoz ◽  
Riad Bourayou ◽  
...  

2021 ◽  
pp. 118919
Author(s):  
Yubing Pan ◽  
Qianqian Wang ◽  
Pengkun Ma ◽  
Xingcan Jia ◽  
Zhiheng Liao ◽  
...  

2021 ◽  
Vol 41 (7) ◽  
pp. 0728002
Author(s):  
于思琪 Yu Siqi ◽  
刘东 Liu Dong ◽  
徐继伟 Xu Jiwei ◽  
王珍珠 Wang Zhenzhu ◽  
吴德成 Wu Decheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document