early summer
Recently Published Documents


TOTAL DOCUMENTS

2129
(FIVE YEARS 446)

H-INDEX

67
(FIVE YEARS 7)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Mikhail V. Kozlov ◽  
Vitali Zverev ◽  
Vladimir I. Gusarov ◽  
Daniil I. Korobushkin ◽  
Nina P. Krivosheina ◽  
...  

Latitudinal gradients allow insights into the factors that shape ecosystem structure and delimit ecosystem processes, particularly climate. We asked whether the biomass and diversity of soil macrofauna in boreal forests change systematically along a latitudinal gradient spanning from 60° N to 69° N. Invertebrates (3697 individuals) were extracted from 400 soil samples (20 × 20 cm, 30 cm depth) collected at ten sites in 2015–2016 and then weighed and identified. We discovered 265 species living in soil and on the soil surface; their average density was 0.486 g d·w·m−2. The species-level diversity decreased from low to high latitudes. The biomass of soil macrofauna showed no latitudinal changes in early summer but decreased towards the north in late summer. This variation among study sites was associated with the decrease in mean annual temperature by ca 5 °C and with variation in fine root biomass. The biomass of herbivores and fungivores decreased towards the north, whereas the biomass of detritivores and predators showed no significant latitudinal changes. This variation in latitudinal biomass patterns among the soil macrofauna feeding guilds suggests that these guilds may respond differently to climate change, with poorly understood consequences for ecosystem structure and functions.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eun-Young Lee ◽  
Kyung-Ae Park

Extreme value analysis (EVA) has been extensively used to understand and predict long-term return extreme values. This study provides the first approach to EVA using satellite-observed sea surface temperature (SST) data over the past decades. Representative EVA methods were compared to select an appropriate method to derive SST extremes of the East/Japan Sea (EJS). As a result, the peaks-over-threshold (POT) method showed better performance than the other methods. The Optimum Interpolation Sea Surface Temperature (OISST) database was used to calculate the 100-year-return SST values in the EJS. The calculated SST extremes were 1.60–3.44°C higher than the average value of the upper 5th-percentile satellite-observed SSTs over the past decades (1982–2018). The monthly distribution of the SST extremes was similar to the known seasonal variation of SSTs in the EJS, but enhanced extreme SSTs exceeding 2°C appeared in early summer and late autumn. The calculated 100-year-return SSTs were compared with the simulation results of the Coupled Model Intercomparison Project 5 (CMIP5) climate model. As a result, the extreme SSTs were slightly smaller than the maximum SSTs of the model data with a negative bias of –0.36°C. This study suggests that the POT method can improve our understanding of future oceanic warming based on statistical approaches using SSTs observed by satellites over the past decades.


2022 ◽  
Author(s):  
Carola Barrientos-Velasco ◽  
Hartwig Deneke ◽  
Anja Hünerbein ◽  
Hannes J. Griesche ◽  
Patric Seifert ◽  
...  

Abstract. For understanding Arctic climate change, it is critical to quantify and address uncertainties in climate data records on clouds and radiative fluxes derived from long-term passive satellite observations. A unique set of observations collected during the research vessel Polarstern PS106 expedition (28 May to 16 July 2017) by the OCEANET facility is exploited here for this purpose and compared with the CERES SYN1deg Ed. 4.1 satellite remote sensing products. Mean cloud fraction (CF) of 86.7 % for CERES and 76.1 % for OCEANET were found for the entire cruise. The difference of CF between both data sets is due to different spatial resolution and momentary data gaps due to technical limitations of the set of ship-borne instruments. A comparison of radiative fluxes during clear-sky conditions enables radiative closure for CERES products by means of independent radiative transfer simulations. Several challenges were encountered to accurately represent clouds in radiative transfer under cloudy conditions, especially for ice-containing clouds and low-level stratus (LLS) clouds. During LLS conditions, the OCEANET retrievals were in particular compromised by the altitude detection limit of 155 m of the cloud radar. Radiative fluxes from CERES show a good agreement with ship observations, having a bias (standard deviation) of −6.0 (14.6) W m−2 and 23.1 (59.3) W m−2 for the downward longwave (LW) and shortwave (SW) fluxes, respectively. Based on CERES products, mean values of the radiation budget and the cloud radiative effect (CRE) were determined for the PS106 cruise track and the central Arctic region (70°–90° N). For the period of study, the results indicate a strong influence of the SW flux in the radiation budget, which is reduced by clouds leading to a net surface CRE of −8.8 W m−2 and −9.3 W m−2 along the PS106 cruise and for the entire Arctic, respectively. The similarity of local and regional CRE supports that the PS106 cloud observations can be considered to be representative of Arctic cloudiness during early summer.


2022 ◽  
Author(s):  
Ruud T. W. L. Hurkmans ◽  
Bart van den Hurk ◽  
Maurice J. Schmeits ◽  
Fredrik Wetterhall ◽  
Ilias G. Pechlivanidis

Abstract. For efficient management of the Dutch surface water reservoir Lake IJssel, (sub)seasonal forecasts of the water volumes going in and out of the reservoir are potentially of great interest. Here, streamflow forecasts were analyzed for the river Rhine at Lobith, which is partly routed through the river IJssel, the main influx into the reservoir. We analyzed multiple seasonal forecast data sets derived from EFAS, E-HYPE and HTESSEL, which differ in their underlying hydrological formulation, but are all forced with similar input from the ECMWF SEAS5 meteorological forecasts. We post-processed the streamflow forecasts using quantile matching (QM) and analyzed several forecast quality metrics. Forecast performance was assessed based on the available reforecast period, as well as on individual summer seasons. QM increased forecast skill for nearly all metrics evaluated. Particularly HTESSEL, a land surface scheme that is not optimized for hydrology, needed the largest correction. Averaged over the reforecast period, forecasts were skillful for the longest lead times in spring and early summer. For this period, E-HYPE showed the highest skill; Later in summer, however, skill deteriorated after 1–2 months. When investigating specific years with either low or high flow conditions, forecast skill increased with the extremity of the event. Although raw forecasts for both E-HYPE and EFAS were more skilful than HTESSEL, bias correction based on QM can significantly reduce the difference. In operational mode, the three forecast systems show comparable skill. In general, dry conditions can be forecasted with high success rates up to three months ahead, which is very promising for successful use of Rhine streamflow forecasts in downstream reservoir management.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kim Vincent ◽  
Hannah Holland-Moritz ◽  
Adam J. Solon ◽  
Eli M. S. Gendron ◽  
Steven K. Schmidt

From the aboveground vegetation to the belowground microbes, terrestrial communities differ between the highly divergent alpine (above treeline) and subalpine (below treeline) ecosystems. Yet, much less is known about the partitioning of microbial communities between alpine and subalpine lakes. Our goal was to determine whether the composition of bacterioplankton communities of high-elevation mountain lakes differed across treeline, identify key players in driving the community composition, and identify potential environmental factors that may be driving differences. To do so, we compared bacterial community composition (using 16S rDNA sequencing) of alpine and subalpine lakes in the Southern Rocky Mountain ecoregion at two time points: once in the early summer and once in the late summer. In the early summer (July), shortly after peak runoff, bacterial communities of alpine lakes were distinct from subalpine lakes. Interestingly, by the end of the summer (approximately 5 weeks after the first visit in August), bacterial communities of alpine and subalpine lakes were no longer distinct. Several bacterial amplicon sequence variants (ASVs) were also identified as key players by significantly contributing to the community dissimilarity. The community divergence across treeline found in the early summer was correlated with several environmental factors, including dissolved organic carbon (DOC), pH, chlorophyll-a (chl-a), and total dissolved nitrogen (TDN). In this paper, we offer several potential scenarios driven by both biotic and abiotic factors that could lead to the observed patterns. While the mechanisms for these patterns are yet to be determined, the community dissimilarity in the early summer correlates with the timing of increased hydrologic connections with the terrestrial environment. Springtime snowmelt brings the flushing of mountain watersheds that connects terrestrial and aquatic ecosystems. This connectivity declines precipitously throughout the summer after snowmelt is complete. Regional climate change is predicted to bring alterations to precipitation and snowpack, which can modify the flushing of solutes, nutrients, and terrestrial microbes into lakes. Future preservation of the unique alpine lake ecosystem is dependent on a better understanding of ecosystem partitioning across treeline and careful consideration of terrestrial-aquatic connections in mountain watersheds.


2022 ◽  
Vol 82 ◽  
Author(s):  
R. Amari ◽  
M. Gammoudi ◽  
H. Tlili ◽  
M. Ben Ali ◽  
A. Hedfi ◽  
...  

Abstract Several endemic species of Blaps occur in Tunisia, and the species Blaps nefrauensis nefrauensis has been reported in Moulares (urban zone in west-central Tunisia), where it lives and reproduces in home gardens and old buildings. The aim of this work is to study the life cycle of the darkling beetle, considering both field and laboratory rearing conditions. As a result, the beetle species has different developmental stages (egg, larva, prepupa, pupa, and adult) that last about 15 months. Each year during the same period, adults emerge (early summer) and expire (late autumn), larvae hatch (late summer) and pupate (early summer). There is only one generation per year. Females began laying eggs in late July. The eggs were ovoid, white, and about 2.7 mm in length and 1.5 mm in width. Embryogenesis took an average of nine days. The first instar larvae were at initially only 4.5 mm long and ivory white in color. A brief description of the newly egg hatched larva was provided; thus, the nerve fibers innervating the apical setae in the antennae and ligula were detected. Further light microscopic examination of the embryo before hatching from the egg pointed out that the antennal sensilla are protected during the embryogenesis stage.


Forecasting ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 36-50
Author(s):  
Le Quyen Nguyen ◽  
Paula Odete Fernandes ◽  
João Paulo Teixeira

Vietnam has experienced a tourism expansion over the last decade, proving itself as one of the top tourist destinations in Southeast Asia. The country received more than 18 million international tourists in 2019, compared to only 1.5 million twenty-five years ago. Tourist spending has translated into rising employment and incomes for Vietnam’s tourism sector, making it the key driver to the socio-economic development of the country. Following the COVID-19 pandemic, only 3.8 million international tourists visited Vietnam in 2020, plummeting by 78.7% year-on-year. The latest outbreak in early summer 2021 made the sector continue to hit bottom. Although Vietnam’s tourism has suffered extreme losses, once the contagion is under control worldwide, the number of international tourists to Vietnam is expected to rise again to reach pre-pandemic levels in the next few years. First, the paper aims to provide a summary of Vietnam’s tourism characteristics with a special focus on international tourists. Next, the predictive capability of artificial neural network (ANN) methodology is examined with the datasets of international tourists to Vietnam from 2008 to 2020. Some ANN architectures are experimented with to predict the monthly number of international tourists to the country, including some lockdown periods due to the COVID-19 pandemic. The results show that, with the correct selection of ANN architectures and data from the previous 12 months, the best ANN models can be forecast for next month with a MAPE between 7.9% and 9.2%. As the method proves its forecasting accuracy, it would serve as a valuable tool for Vietnam’s policymakers and firm managers to make better investment and strategic decisions.


2021 ◽  
Author(s):  
Monique Patzner ◽  
Nora Kainz ◽  
Erik Lundin ◽  
Maximilian Barczok ◽  
Chelsea Smith ◽  
...  

In permafrost peatlands, up to 20% of total organic carbon (OC) is bound to reactive iron (Fe) minerals in the active layer overlying intact permafrost, potentially protecting OC from microbial degradation and transformation into greenhouse gases (GHG) such as CO2 and CH4. During the summer, shifts in runoff and soil moisture influence redox conditions and therefore the balance of Fe oxidation and reduction. Whether this “rusty carbon sink” is stable or continuously dissolved by Fe(III) reduction and reformed by Fe(II) oxidation during redox shifts remains unknown. We exposed ferrihydrite (FH)-coated sand in the active layer along a permafrost thaw gradient in Stordalen mire (Abisko, Sweden) over the summer (June to September) to capture changes in redox conditions and quantify formation and dissolution of reactive Fe(III) (oxyhydr)oxides and associated OC. We found that Fe(III) minerals formed under the constantly oxic conditions in palsa soils overlying intact permafrost over the full summer season. In contrast, in fully-thawed fen areas, conditions were continuously anoxic and by late summer 50.4% of the original Fe(III) (oxyhydr)oxides were lost via dissolution while 44.7% and 4.9% of the Fe remained as Fe(III) and Fe(II) on the sand, respectively. Periodic redox shifts (from 0 mV to +300 mV) were observed over the summer season in the partially-thawed bog due to changes in active layer depth, runoff and soil moisture. This resulted in dissolution and loss of 47.5% of initial Fe(III) (oxyhydr)oxides and release of associated OC in early summer when conditions are wetter and more reduced, and new formation of Fe(III) minerals (34.7% gain in comparison to initial Fe) in the late summer under more dry and oxic conditions which again sequestered Fe-bound organic carbon. Our data suggests that the so-called rusty carbon sink is seasonally dynamic in partially-thawed permafrost peatlands, thus likely either promoting or suppressing carbon mineralization and leading to seasonal changes in GHG emissions.


Author(s):  
Mohanad Abdulhadi Lawgali ◽  
Faiaz Ragab Halies ◽  
Rasmia H. Feituri ◽  
Mohammed Rafia Abas

Globally, fewer cases of COVID-19 have been reported in children (age 0-17 years) compared with adults [1,2], The number and rate of cases in children have been steadily increasing since March 2020. The true incidence of SARS-CoV-2 infection in children is not known due to lack of widespread testing and the prioritization of testing for adults and those with severe illness. Hospitalization rates in children are significantly lower than hospitalization rates in adults with COVID-19, suggesting that children may have less severe illness from COVID-19 compared to adults [5,6]. Evidence suggests that compared to adults, children likely have similar viral loads in their nasopharynx, [7] similar secondary infections rates, and can spread the virus to others [8,9]. Due to community mitigation measures and school closures, transmission of SARS-CoV-2 to and among children may have been reduced during the pandemic in the spring and early summer of 2020. This may explain the low incidence in children compared with adults. Comparing trends in pediatric infections before and after the return to child care, in-person school, youth sports and other activities may enhance our understanding about infections in children. Children infected with SARS-CoV-2 may have many of these non-specific symptoms, only have a few (such as only upper respiratory symptoms or only gastrointestinal symptoms), or may be asymptomatic. The most common symptoms in children are cough and/or fever [11-15]. A recent systematic review estimated that 16% of children with SARS-CoV-2 infection are asymptomatic, [16] but evidence suggests that as many as half of pediatric infections may be asymptomatic [17] The signs and symptoms of COVID-19 in children are similar to those of other infections and noninfectious processes, including influenza, streptococcal pharyngitis, and allergic rhinitis. The lack of specificity of signs or symptoms and the significant proportion of asymptomatic infections make symptom-based screening for identification of SARS-CoV-2 in children particularly challenging [17].


Sign in / Sign up

Export Citation Format

Share Document