scholarly journals Developing Pavement Distress Deterioration Models for Pavement Management System Using Markovian Probabilistic Process

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Promothes Saha ◽  
Khaled Ksaibati ◽  
Rebecca Atadero

In the state of Colorado, the Colorado Department of Transportation (CDOT) utilizes their pavement management system (PMS) to manage approximately 9,100 miles of interstate, highways, and low-volume roads. Three types of deterioration models are currently being used in the existing PMS: site-specific, family, and expert opinion curves. These curves are developed using deterministic techniques. In the deterministic technique, the uncertainties of pavement deterioration related to traffic and weather are not considered. Probabilistic models that take into account the uncertainties result in more accurate curves. In this study, probabilistic models using the discrete-time Markov process were developed for five distress indices: transverse, longitudinal, fatigue, rut, and ride indices, as a case study on low-volume roads. Regression techniques were used to develop the deterioration paths using the predicted distribution of indices estimated from the Markov process. Results indicated that longitudinal, fatigue, and rut indices had very slow deterioration over time, whereas transverse and ride indices showed faster deterioration. The developed deterioration models had the coefficient of determination (R2) above 0.84. As probabilistic models provide more accurate results, it is recommended that these models be used as the family curves in the CDOT PMS for low-volume roads.

2018 ◽  
Vol 222 ◽  
pp. 01003
Author(s):  
Jakub Fengier ◽  
Mieczysław Słowik ◽  
Andrzej Pożarycki

Standard method to assess the pavement profile is to calculate the MPD (Mean Profile Depth) index based on results obtained usually by usage of laser techniques. In analysis the models of the surface pavements have been used in order to calculate the s1, s2, s3 parameters values corresponding to mega-, macro- and microtexture respectively. The values of the developed parameters s1, s2, s3 are calculated from the specific power spectral density values of surface roughness obtained for the threshold pavement roughness wavelength equal to 0.1, 0.05, 0.005 and 0.0005 m. The skid resistance has been correlated to the s1, s2, s3 parameters using 11 varied cases related to asphalt and concrete pavements. Skid resistance tests have been performed using CSR (Continuous Skid Resistance) device with fixed slip ratio equal to 13%. Three different test speed values 45, 65 and 95 km/h have been used. The obtained results lead to factorial correlation equations between developed parameters and skid resistance indices. Correlation results for uncontaminated pavement surface can be characterized by the coefficient of determination values in range between 0.55 and 0.94. The results can be used for contactless determination of pavement skid resistance in Pavement Management System.


2021 ◽  
Author(s):  
Muzaffar Hassan

Measuring pavement performance is a major component of the pavement management system. It assists in decision-making for finding the optimum strategies to provide, evaluate, and maintain serviceability in an acceptable condition cost effectively. The Ontario Ministry of Transportation (MTO) has been systematically rating pavement performance since the mid-1960s. Pavement condition survey involves measurement of two physical parameters: ride quality of pavement surfaces, and the extent and severity of pavement distress manifestations. The pavement ride quality can be measured with an acceptable level of consistency and repeatability through automation. However, achieving consistency in the evaluation of pavement distress manifestations is a challenging task because the automation that could accurately and consistently detect, quantify and record surface distresses is not fully developed is spite of rapid advances in video imagery and non-contact sensing devices. This report evaluates the progress made over the past three decades in the key areas of Distress Manifestation Index, Riding Comfort Rating, Pavement Condition Index and second generation Pavement Management System (PMS2). A review of the Ministryʼs network-level pavement performance database is presented, emphasizing pavement condition surveys, prediction models and main factors influencing assessment of long-term pavement performance. Several key issues related to the quality control and quality assurance of the pavement roughness are discussed with reference to the verification techniques used by the MTO. Based on the literature review, future recommendations for possible improvements of the prediction models and techniques used for the evaluation of pavement performance are presented in order to obtain more consistent values.


2021 ◽  
Author(s):  
Muzaffar Hassan

Measuring pavement performance is a major component of the pavement management system. It assists in decision-making for finding the optimum strategies to provide, evaluate, and maintain serviceability in an acceptable condition cost effectively. The Ontario Ministry of Transportation (MTO) has been systematically rating pavement performance since the mid-1960s. Pavement condition survey involves measurement of two physical parameters: ride quality of pavement surfaces, and the extent and severity of pavement distress manifestations. The pavement ride quality can be measured with an acceptable level of consistency and repeatability through automation. However, achieving consistency in the evaluation of pavement distress manifestations is a challenging task because the automation that could accurately and consistently detect, quantify and record surface distresses is not fully developed is spite of rapid advances in video imagery and non-contact sensing devices. This report evaluates the progress made over the past three decades in the key areas of Distress Manifestation Index, Riding Comfort Rating, Pavement Condition Index and second generation Pavement Management System (PMS2). A review of the Ministryʼs network-level pavement performance database is presented, emphasizing pavement condition surveys, prediction models and main factors influencing assessment of long-term pavement performance. Several key issues related to the quality control and quality assurance of the pavement roughness are discussed with reference to the verification techniques used by the MTO. Based on the literature review, future recommendations for possible improvements of the prediction models and techniques used for the evaluation of pavement performance are presented in order to obtain more consistent values.


2021 ◽  
Vol 13 (16) ◽  
pp. 9201 ◽  
Author(s):  
Paola Di Mascio ◽  
Alessio Antonini ◽  
Piero Narciso ◽  
Antonio Greto ◽  
Marco Cipriani ◽  
...  

Maintenance and rehabilitation (M&R) scheduling for airport pavement is supported by the scientific literature, while a specific tool for heliport pavements lacks. A heliport pavement management system (HPMS) allows the infrastructure manager to obtain benefits in technical and economic terms, as well as safety and efficiency, during the analyzed period. Structure and rationale of the APSM could be replicated and simplified to implement a HPMS because movements of rotary-wing aircrafts have less complexity than fixed-wing ones and have lower mechanical effects on the pavement. In this study, an innovative pavement condition index-based HPMS has been proposed and implemented to rigid and flexible surfaces of the airport of Vergiate (province of Varese, Italy), and two twenty-year M&R plans have been developed, where the results from reactive and proactive approaches have been compared to identify the best strategy in terms of costs and pavement level of service. The result obtained shows that although the loads and traffic of rotary-wing aircrafts are limited, the adoption of PMS is also necessary in the heliport environment.


Sign in / Sign up

Export Citation Format

Share Document