scholarly journals Proposal and Implementation of a Heliport Pavement Management System: Technical and Economic Comparison of Maintenance Strategies

2021 ◽  
Vol 13 (16) ◽  
pp. 9201 ◽  
Author(s):  
Paola Di Mascio ◽  
Alessio Antonini ◽  
Piero Narciso ◽  
Antonio Greto ◽  
Marco Cipriani ◽  
...  

Maintenance and rehabilitation (M&R) scheduling for airport pavement is supported by the scientific literature, while a specific tool for heliport pavements lacks. A heliport pavement management system (HPMS) allows the infrastructure manager to obtain benefits in technical and economic terms, as well as safety and efficiency, during the analyzed period. Structure and rationale of the APSM could be replicated and simplified to implement a HPMS because movements of rotary-wing aircrafts have less complexity than fixed-wing ones and have lower mechanical effects on the pavement. In this study, an innovative pavement condition index-based HPMS has been proposed and implemented to rigid and flexible surfaces of the airport of Vergiate (province of Varese, Italy), and two twenty-year M&R plans have been developed, where the results from reactive and proactive approaches have been compared to identify the best strategy in terms of costs and pavement level of service. The result obtained shows that although the loads and traffic of rotary-wing aircrafts are limited, the adoption of PMS is also necessary in the heliport environment.

Author(s):  
Jie Yuan ◽  
Michael A. Mooney

The Oklahoma airfield pavement management system (APMS) is a set of pavement management tools that can assist with pavement condition evaluation, as well as prioritization and scheduling of pavement maintenance and rehabilitation activities. Pavement performance models were developed to support the APMS for more than 70 Oklahoma general aviation airports. The family modeling method based on the pavement condition index was tailored to fit the deterioration characteristics of these airfield pavements. The statistical and engineering significance of seven levels of pavement factors was investigated, and pavement factors that affect pavement deterioration significantly were identified as family variables. Asphalt concrete pavement families were formed by sorting pavement function, distress cause, and pavement thickness, while portland cement concrete pavements were divided into families according to pavement function and climate zone. The family polynomial curves were able to reveal the expected deterioration patterns and are logical in engineering principle. Rooted by an adaptive database, the system accepts expert opinion and automatically integrates effects of major maintenance and rehabilitation activities into modeling. From the up-to-date database, the performance models update forecasts automatically.


Author(s):  
Gulfam Jannat ◽  
Susan L. Tighe

In a pavement management system (PMS), time to maintenance is generally estimated based on the predicted condition of the pavement. Usually a deterministic approach is applied in the PMS to estimate the time to maintenance by following the deterioration equation of the performance index. However, it is necessary to be aware of the probability of failure to investigate whether the estimated time to maintenance by the deterministic approach is reasonably probable. For this reason, a probabilistic approach is applied in this study to estimate the probability of failure over the estimated time to maintenance. In this approach, the probability of failure is estimated from the distribution of the mean time to maintenance by considering both the overall condition of the pavement and individual instances of distress. These mean times to failure or maintenance are calculated from the overall condition of pavement in relation to the pavement condition index (PCI) when the trigger value becomes 65 or less. A pavement may be expected to fail, however, because of any specific distress before it reaches the PCI trigger value for maintenance. For this reason, the probability of failure of each specific distress is also investigated by using a Monte Carlo simulation. It is found that the survival probability up to the fifth year is approximately 80% to 90% for each category of traffic and material type based on the overall condition, and the probability of failure for individual distress is very low over the performance cycle.


Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 78
Author(s):  
Mariusz Wesołowski ◽  
Paweł Iwanowski

Airoport infrastructure development requires care to maintain it in proper technical condition. Due to this, airport pavements should be constantly monitored, and, above all, correctly managed. High-level airport pavement management requires access to reliable information about their current technical condition as well as proper forecasting of this condition in the future. Obtaining good quality information about the technical condition of airport pavement should be based on a proven methodology, taking into account the introduced quality management system. The authors propose a method of technical pavement condition assessment based on the Airfield Pavement Condition Index (APCI), taking into account not only the results of the surface deterioration inventory, but also repair overviews, load bearing capacity, evenness and roughness of the surface, as well as the surface tensile bond strength. The method was developed during long-term work financed by the Ministry of Science and Higher Education. At the beginning of the article, the authors focus on reviewing the currently available methods of assessing the technical condition of the pavement. Then they briefly present the most popular surface assessment method based on the PCI indicator. Afterwards, a proprietary asphalt pavement assessment method based on the APCI indicator is proposed and an example of how to use the method is presented. Finally, they discuss the results and summarize the work done, and present further directions of work.


2019 ◽  
Vol 5 (6) ◽  
pp. 1367-1383
Author(s):  
Muhammad Saleem Zafar ◽  
Syed Naveed Raza Shah ◽  
Muhammad Jaffar Memon ◽  
Touqeer Ali Rind ◽  
Muhammad Afzal Soomro

Pavements are major means of highway infrastructure. Maintenance and rehabilitation of these pavements for the required serviceability is a routine problem faced by highway engineers and organizations. Improvement in road management system results in reduction of time and cost, the pavement condition survey plays a big role in the pavement management. The initial phase in setting up a pavement management system (PMS) is road network identification. A vital element of a PMS is the capacity to assess the present condition of a pavement network and anticipation of future condition. The pavement condition index (PCI) is a numerical index generally utilized for the assessment of the operational condition & structural reliability of pavements. Estimation of the PCI is dependent on the results of a visual inspection in which the type, severity, and quantity of distresses are distinguished. In this research, a pavement distress condition rating strategy was utilized to accomplish the goals of this study. The main targets of this research were to categorize the common types of distress that exist on “Lakhi Larkana National Highway (N-105)”, and to estimate the pavement condition index. Using these data, Average PCI for the highway section was calculated. PCI to assess the pavement performance, 10 out of 19 defects were recognized in the pavement, as stated by the PCI method. Results indicated that the common pavement distress types were depressions, polished aggregate, rutting, potholes, block cracking, and alligator cracking.


Author(s):  
Franco Pigozzi ◽  
Silvia Portas ◽  
Francesca Maltinti ◽  
Mauro Coni

Abstract The load-carrying capacity, is one of the indicators used to assess airfield pavement conditions. It could be estimated by evaluating the response of stationary dynamic loads, using a deflectometric device that simulates the stress inducted by an aircraft moving at moderate speed. This device is widely used because tests are nondestructive and rapid to execute and can be conducted for cyclic investigations, providing valuable support to maintenance and rehabilitation (M&R) decision makers through pavement management system (PMS). Pavement response is evaluated as a function of the deflection basin induced by the deflectometric device. It is well known that deflectometric measurements are influenced by external parameters such as weather conditions, especially temperature of upper layers or the percentage of water contained on unbounded layers. In this study the deflections basin response obtained for different load and weather conditions has been analyzed through the application of benchmarking values for immediately structural assessments. Tests were performed using the Heavy Weight Deflectometer (HWD) on 9 points along five longitudinal alignments from the centerline, 0.00 m, ± 3.00 m, and ± 5.20 m. The benchmarking methodology was used to evaluate and compare runway pavement performance under different weather conditions and testing loads. The applied benchmarking methodology resulted an easy and rapid assessment tool of pavement conditions at network-level.


Author(s):  
K. Helali ◽  
T.J. Kazmierowski ◽  
A. Bradbury ◽  
M. A. Karan

A study is described that was conducted in response to the premature deterioration of dense friction course/open friction course (DFC/OFC) hot mix surfaces with steel slag aggregates in the greater Toronto area. The deterioration manifested itself in the form of severe raveling and early formation of map cracking. A network-level pavement management system (PMS) was applied to this unique problem. A pavement condition evaluation was conducted, and a steel slag DFC/OFC-specific deterioration model was developed. The application of the PMS has been efficient. It facilitated estimating the rehabilitation needs, prioritizing the rehabilitation strategies, and demonstrating the most cost-effective budget.


Author(s):  
Narges Matini ◽  
Nader Tabatabaee ◽  
Mojtaba Abbasghorbani

The objective of this study was to develop an approach for incorporating techniques used to interpret and evaluate deflection data for network-level pavement management system applications. A national pavement management system is being developed in Iran and the use of falling weight deflectometers (FWDs) at the network level was deemed necessary to compensate for the lack of vital construction history data in the pavement inventory. Because FWD measurements disrupt traffic flow and are a potential safety hazard, it is imperative to increase the interval between FWD testing points as much as possible to allow scanning of the entire 51,000 km network of freeways, highways, and major roads in a reasonable time span with the least traffic disruption. A project-level dataset at 0.2 km intervals in different environments and diverse traffic categories was selected for analysis. In addition, data from continuous ground-penetrating radar was collected concurrently and compared with a limited number of cores. The overall analysis included evaluation of interval variation, segmentation, the structural condition index (SCI), and layer moduli calculated using the AASHTO and ELMOD methods. The analysis was done to determine the optimum interval between test points. Analysis showed that the collection intervals could be increased from 0.2 to 0.6 km. Subsequently, the applicability and time efficiency of the network-level intervals were verified by calculating overlay thickness and time required.


2017 ◽  
Vol 2639 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Waleed Aleadelat ◽  
Khaled Ksaibati

The Wyoming Technology Transfer Center is in the process of developing a pavement management system (PMS) for county paved roads in Wyoming. This PMS uses the present serviceability index (PSI) as a main pavement performance parameter. This PMS depends on pavement condition index, international roughness index, and pavement rutting as explanatory variables to estimate PSI. This study researched new explanatory variables measured by using smartphones’ sensors to estimate PSI. It was found that the variance of the signals (time series acceleration data) acquired by smartphones’ accelerometers could work as a very good explanatory variable to estimate PSI. Two models were developed with high significance ( R2 higher than .9) to predict PSI using the variance of smartphone signals. The initial validation results suggested that using these models could predict, with high certainty, the actual PSI values. The difference between the predicted and the actual PSI values was not statistically different. The study was performed on 20 roadway segments extracted from the Wyoming county roads’ PMS database. In addition, the selected segments had various lengths and geometric features reflecting various roadway segments under any PMS. The proposed methodology is intended to lower the cost of measuring county roads’ pavement conditions by estimating PSI directly without the reliance on the direct measurement of pavement condition parameters.


2021 ◽  
Author(s):  
Muzaffar Hassan

Measuring pavement performance is a major component of the pavement management system. It assists in decision-making for finding the optimum strategies to provide, evaluate, and maintain serviceability in an acceptable condition cost effectively. The Ontario Ministry of Transportation (MTO) has been systematically rating pavement performance since the mid-1960s. Pavement condition survey involves measurement of two physical parameters: ride quality of pavement surfaces, and the extent and severity of pavement distress manifestations. The pavement ride quality can be measured with an acceptable level of consistency and repeatability through automation. However, achieving consistency in the evaluation of pavement distress manifestations is a challenging task because the automation that could accurately and consistently detect, quantify and record surface distresses is not fully developed is spite of rapid advances in video imagery and non-contact sensing devices. This report evaluates the progress made over the past three decades in the key areas of Distress Manifestation Index, Riding Comfort Rating, Pavement Condition Index and second generation Pavement Management System (PMS2). A review of the Ministryʼs network-level pavement performance database is presented, emphasizing pavement condition surveys, prediction models and main factors influencing assessment of long-term pavement performance. Several key issues related to the quality control and quality assurance of the pavement roughness are discussed with reference to the verification techniques used by the MTO. Based on the literature review, future recommendations for possible improvements of the prediction models and techniques used for the evaluation of pavement performance are presented in order to obtain more consistent values.


2020 ◽  
Vol 15 (3) ◽  
pp. 111-129
Author(s):  
Igoris Kravcovas ◽  
Audrius Vaitkus ◽  
Rita Kleizienė

The key factors for effective pavement management system (PMS) are timely preservation and rehabilitation activities, which provide benefit in terms of drivers’ safety, comfort, budget and impact on the environment. In order to reasonably plan the preservation and rehabilitation activities, the pavement performance models are used. The pavement performance models are usually based on damage and distress observations of rural roads, and can be applied to forecast the performance of urban roads. However, the adjustment of the parameters related to traffic volume, speed and load, climate conditions, and maintenance has to be made before adding them to PMS for urban roads. The main objective of this study is to identify the performance indicators and to suggest pavement condition establishment methodology of urban roads in Vilnius. To achieve the objective, the distresses (rut depth and cracks), bearing capacity, and international roughness index (IRI) were measured for fifteen urban roads in service within a two-year period. The distresses, rut depth and IRI were collected with the Road Surface Tester (RST) and bearing capacity of pavement structures were measured with a Falling Weight Deflectometer (FWD). The measured distresses were compared to the threshold values identified in the research. According to the measured data, the combined pavement condition indices using two methodologies were determined, as well as a global condition index for each road. The analysed roads were prioritized for maintenance and rehabilitation in respect to these criteria. Based on the research findings, the recommendations for further pavement condition monitoring and pavement performance model implementation to PMS were highlighted.


Sign in / Sign up

Export Citation Format

Share Document