scholarly journals Mechanobiological Analysis of Molar Teeth with Carious Lesions through the Finite Element Method

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
R. A. Hernández-Vázquez ◽  
Betriz Romero-Ángeles ◽  
Guillermo Urriolagoitia-Sosa ◽  
Juan Alejandro Vázquez-Feijoo ◽  
Rodrigo Arturo Marquet-Rivera ◽  
...  

The analysis of the distribution of stress in dental organs is a poorly studied area. That is why computational mechanobiological analysis at the tissue level using the finite element method is very useful to achieve a better understanding of the biomechanics and the behaviour of dental tissues in various pathologies. This knowledge will allow better diagnoses, customize treatment plans, and establish the basis for the development of better restoration materials. In the present work, through the use of high-fidelity biomodels, computational mechanobiological analyses were performed on four molar models affected with four different degrees of caries, which are subjected to masticatory forces. With the analyses performed, it is possible to observe that the masticatory forces that act on the enamel are not transmitted to the dentin and to the bone and periodontal ligament to protect the nerve, as it happens in a healthy dental organ. With the presence of decay, these forces are transmitted partly to the pulp. The reactions to the external loads on the dental organs depend on the advances of the carious lesion that they present, since the distribution of stresses is different in a healthy tooth.

2017 ◽  
Vol 22 (5) ◽  
pp. 83-89
Author(s):  
Flávio Siqueira Calçada ◽  
Antônio Sérgio Guimarães ◽  
Marcelo Lucchesi Teixeira ◽  
Flávio Atsushi Takamatsu

ABSTRACT Objective: To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. Methods: a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. Results: The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. Conclusions: stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy.


1994 ◽  
Vol 116 (3) ◽  
pp. 254-260 ◽  
Author(s):  
J. Rasty ◽  
P. Tamhane

Multilayered wrapped vessel technology utilizes the compressive prestress induced during construction process to gain a considerable advantage over the monoblock vessels. The compressive prestress allows for more efficient use of construction material and more uniform distribution of stress throughout the vessel’s cross section. Analysis of the magnitude of prestress throughout the vessel’s thickness has been previously reported (Rasty, 1988). However, one major idealization in such analysis has been the assumption that the magnitude of induced prestress is constant around the circumference of the vessel. In this research, thermoelastic finite element method was utilized to simulate the construction process of one layer of the vessel. It was concluded that the compressive residual stress induced by the weld shrinkage varies through the circumference of the vessel by as much as 13.5 percent. Circumferential distributions of the prestress are presented and compared to the closed-form solutions (constant prestress assumption) in earlier works.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document