scholarly journals On Fixed Point Property under Lipschitz and Uniform Embeddings

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jichao Zhang ◽  
Lingxin Bao ◽  
Lili Su

We first present a generalization of ω⁎-Gâteaux differentiability theorems of Lipschitz mappings from open sets to those closed convex sets admitting nonsupport points and then show that every nonempty bounded closed convex subset of a Banach space has the fixed point property for isometries if it Lipschitz embeds into a super reflexive space. With the application of Baudier-Lancien-Schlumprecht’s theorem, we finally show that every nonempty bounded closed convex subset of a Banach space has the fixed point property for continuous affine mappings if it uniformly embeds into the Tsirelson space T⁎.


1989 ◽  
Vol 39 (1) ◽  
pp. 25-30 ◽  
Author(s):  
M.A. Khamsi

We prove that the classical sequence James space has the fixed point property. This gives an example of Banach space with a non-unconditional basis where the Maurey-Lin's method applies.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Joseph Frank Gordon

In this paper, we introduce a new class of mappings and investigate their fixed point property. In the first direction, we prove a fixed point theorem for general higher-order contraction mappings in a given metric space and finally prove an approximate fixed point property for general higher-order nonexpansive mappings in a Banach space.



Author(s):  
Anthony To-Ming Lau ◽  
Yong Zhang

Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.



2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
P. Thongin ◽  
W. Fupinwong

A Banach spaceXis said to have the fixed point property if for each nonexpansive mappingT:E→Eon a bounded closed convex subsetEofXhas a fixed point. LetXbe an infinite dimensional unital Abelian complex Banach algebra satisfying the following: (i) condition (A) in Fupinwong and Dhompongsa, 2010, (ii) ifx,y∈Xis such thatτx≤τy,for eachτ∈Ω(X),thenx≤y,and (iii)inf⁡{r(x):x∈X,x=1}>0.We prove that there exists an elementx0inXsuch that〈x0〉R=∑i=1kαix0i:k∈N,αi∈R¯does not have the fixed point property. Moreover, as a consequence of the proof, we have that, for each elementx0inXwith infinite spectrum andσ(x0)⊂R,the Banach algebra〈x0〉=∑i=1kαix0i:k∈N,αi∈C¯generated byx0does not have the fixed point property.



2001 ◽  
Vol 64 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Andrzej Wiśnicki

A Banach space X is said to have property (Sm) if every metrically convex set A ⊂ X which lies on the unit sphere and has diameter not greater than one can be (weakly) separated from zero by a functional. We show that this geometrical condition is closely connected with the fixed point property for nonexpansive mappings in superreflexive spaces.



1999 ◽  
Vol 59 (3) ◽  
pp. 361-367 ◽  
Author(s):  
A. Jiménez-Melado

Roughly speaking, we show that a Banach space X has the fixed point property for nonexpansive mappings whenever X has the WORTH property and the unit sphere of X does not contain a triangle with sides of length larger than 2.



2003 ◽  
Vol 2003 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Eva María Mazcuñán-Navarro

We consider the modulus ofu-convexity of a Banach space introduced by Ji Gao (1996) and we improve a sufficient condition for the fixed-point property (FPP) given by this author. We also give a sufficient condition for normal structure in terms of the modulus ofu-convexity.



1994 ◽  
Vol 49 (3) ◽  
pp. 523-528 ◽  
Author(s):  
Brailey Sims

It has recently been shown that a Banach space enjoys the weak fixed point property if it is ε0-inquadrate for some ε0 < 2 and has WORTH; that is, if then, ║xn — x║ — ║xn + x║ → 0, for all x. We establish the stronger conclusion of weak normal structure under the substantially weaker assumption that the space has WORTH and is ‘ε0-inquadrate in every direction’ for some ε0 < 2.



2012 ◽  
Vol 75 (13) ◽  
pp. 5357-5361 ◽  
Author(s):  
Carlos A. Hernández-Linares ◽  
Maria A. Japón


2003 ◽  
Vol 2003 (3) ◽  
pp. 183-192
Author(s):  
Maria A. Japón Pineda

We prove that every Banach space containing an isomorphic copy ofc0fails to have the fixed-point property for asymptotically nonexpansive mappings with respect to some locally convex topology which is coarser than the weak topology. If the copy ofc0is asymptotically isometric, this result can be improved, because we can prove the failure of the fixed-point property for nonexpansive mappings.



Sign in / Sign up

Export Citation Format

Share Document