scholarly journals A Note on the Waiting-Time Distribution in an Infinite-Buffer GI[X]/C-MSP/1 Queueing System

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
A. D. Banik ◽  
M. L. Chaudhry ◽  
James J. Kim

This paper deals with a batch arrival infinite-buffer single server queue. The interbatch arrival times are generally distributed and arrivals are occurring in batches of random size. The service process is correlated and its structure is presented through a continuous-time Markovian service process (C-MSP). We obtain the probability density function (p.d.f.) of actual waiting time for the first and an arbitrary customer of an arrival batch. The proposed analysis is based on the roots of the characteristic equations involved in the Laplace-Stieltjes transform (LST) of waiting times in the system for the first, an arbitrary, and the last customer of an arrival batch. The corresponding mean sojourn times in the system may be obtained using these probability density functions or the above LSTs. Numerical results for some variants of the interbatch arrival distribution (Pareto and phase-type) have been presented to show the influence of model parameters on the waiting-time distribution. Finally, a simple computational procedure (through solving a set of simultaneous linear equations) is proposed to obtain the “R” matrix of the corresponding GI/M/1-type Markov chain embedded at a prearrival epoch of a batch.

1991 ◽  
Vol 28 (02) ◽  
pp. 433-445 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1991 ◽  
Vol 28 (2) ◽  
pp. 433-445
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1997 ◽  
Vol 34 (03) ◽  
pp. 795-799 ◽  
Author(s):  
Hiroshi Toyoizumi

This paper presents a new proof of Sengupta's invariant relationship between virtual waiting time and attained sojourn time and its application to estimating the virtual waiting time distribution by counting the number of arrivals and departures of a G/G/1 FIFO queue. Since this relationship does not require any parametric assumptions, our method is non-parametric. This method is expected to have applications, such as call processing in communication switching systems, particularly when the arrival or service process is unknown.


1997 ◽  
Vol 34 (3) ◽  
pp. 795-799 ◽  
Author(s):  
Hiroshi Toyoizumi

This paper presents a new proof of Sengupta's invariant relationship between virtual waiting time and attained sojourn time and its application to estimating the virtual waiting time distribution by counting the number of arrivals and departures of a G/G/1 FIFO queue. Since this relationship does not require any parametric assumptions, our method is non-parametric. This method is expected to have applications, such as call processing in communication switching systems, particularly when the arrival or service process is unknown.


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


2020 ◽  
Vol 10 (10) ◽  
pp. 3555 ◽  
Author(s):  
Rong Liu ◽  
Yi He ◽  
Yunfeng Zhao ◽  
Xiang Jiang ◽  
Song Ren

Tectonic coal has become an important research topic for preventing coal mine disasters and for exploring and developing coal-bed methane resources. To investigate the mechanical and acoustic properties of tectonic coal, we conducted a uniaxial compression test for tectonic and non-tectonic coal, and acoustic emission (AE) signals have been simultaneous captured in the compression process. The AE energy and waiting time of events have been studied statistically. The results show that the probability density function of AE energy follows the power law distribution well, and indicates that the AE of non-tectonic coal is mainly generated from the fracture source, while the probability density function distribution of tectonic coal is the mixing result of fracture and friction effects. Only the waiting time distribution of non-tectonic coal follows the typical brittle fracture’s double power law behavior. The waiting time distribution of tectonic coal shows the single power law with a smaller exponent value, which is associated with the granular microstructure of tectonic coal. The distribution of aftershock and Båth’s law are not sensitive to microstructure, and are identical for non-tectonic and tectonic coal. At last, the correlation dimension results for the spatial distribution of AE hypocenters indicated that the rough continuous decrease in multifractal dimension might be a precursor to devastating destruction.


Author(s):  
J. Köllerström

Various elegant properties have been found for the waiting time distribution G for the queue GI/G/1 in statistical equilibrium, such as infinite divisibility ((1), p. 282) and that of having an exponential tail ((11), (2), p. 411, (1), p. 324). Here we derive another property which holds quite generally, provided the traffic intensity ρ < 1, and which is extremely simple, fitting in with the above results as well as yielding some useful properties in the form of upper and lower stochastic bounds for G which augment the bounds obtained by Kingman (5), (6), (8) and by Ross (10).


Sign in / Sign up

Export Citation Format

Share Document